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Abstract

How transparent are informational institutions if their founders have to agree on the design?

We analyze a model where several agents bargain over persuasion of a single receiver. We

characterize the existence of an agreement that is beneficial for all agents relative to some

fixed benchmark information structure, when the preferences of agents are state-independent,

and provide sufficient conditions for general preferences. We further show that a beneficial

agreement exists if, for every coalition of a fixed size, there is a belief that generates enough

surplus for its members. Next, we concentrate on “agent-partitional” environments, where for

each agent there is a state where the informed decision of the receiver benefits her the most.

In these environments, we define endorsement rules that fully reveal all such “agent-states”.

Endorsement rules are Pareto efficient when providing information at all agent-states generates

enough surplus, and they correspond to a Nash Bargaining solution when the environment is also

symmetric. We provide two political economic applications of our model. In a running example,

we discuss the implication of our model to bargaining of authoritarian elites over media policy.

The last section applies the model to an electoral campaign in a multiparty democracy.
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1 Introduction

A group of agents negotiates how to set up an information institution to influence the action of a

decision-maker. If agents agree, a signal is generated at each state of the world according to some

probability distribution. If they cannot agree, full, partial, or no information is revealed depending

on the context. For instance, representatives of an industry and public officials design a disclosure

policy, such as stress testing in the financial sector or disclosure of the health effects of tobacco

products, in which case nothing becomes public unless regulations are in place. Another application

is the bargaining between political elites over how much to limit (encourage) media freedom, in which

case the media remain free (censored) unless the elites agree. For example, after Stalin’s death, the

Communist Party of the Soviet Union did not have a single leader, and its members competed for

power. Some, including Khruschev (the General Secretary of the Party at the time), tried to ride

the wave of exposing Stalin’s crimes. In 1956, Khruschev denounced Stalin’s repressions, which

sparked a debate in Soviet society. Later that year, a group of Politburo members wrote a letter to

Party sections that suggested limiting the criticism of the Soviet system. They agreed on a single

line that preserved the regime’s stability [Rowe, 1964]. After this, proponents of reform who called

for a debate about repressions disappeared from newspapers and journals, and the official rhetoric

became more conservative [Loewenstein, 2006].

In this paper, we analyze a generalization of the canonical Bayesian Persuasion setup by Ka-

menica and Gentzkow [2011] where multiple agents bargain over the information structures for the

persuasion of a single receiver. When is there an agreement that benefits all agents relative to the

expected disagreement outcome? A beneficial agreement exists if there is a distribution over beliefs,

not necessarily Bayesian plausible, where for each agent the expected payoff is greater than the

disagreement one. Furthermore, there is no such agreement if and only if there exist welfare weights

such that the weighted sum of expected payoffs is always lower than the corresponding sum at the

disagreement stage. How much transparency would agents agree on? We address this question

for “agent-partitional” environments, where for each agent there is a state of the world where the

informed decision of the receiver benefits her the most. The complete revelation of all such “agent-

states” is Pareto efficient when the informed decision of the receiver at each of the agent-states

generates enough total surplus.

More formally, we consider an environment with a finite set of agents, a single receiver, finite

state space, and a finite set of actions available to the receiver. An information structure specifies

a probability distribution over a given set of signals at each state of the world. If agents agree on

an information structure, the receiver observes the signal, forms a Bayesian posterior, and takes an

action. The corresponding outcome affects all agents in potentially different ways. If agents cannot

agree, the game enters a disagreement stage, where a benchmark information structure prevails.

The benchmark information structure might be a result of a competitive persuasion game played

by the agents [Gentzkow and Kamenica, 2016, 2017], or it could be that none of the agents is

able to provide any information without agreeing with others. We assume that the benchmark

information structure induces beliefs on which the receiver takes a unique optimal action. We call

such information structures discrete. We concentrate on environments where no information and
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full revelation are discrete.1

In section 3, we first assume that the agents’ preferences are independent of the states and

prove that the existence of a beneficial agreement is equivalent to the existence of a beneficial

distribution over posterior beliefs. The proof for the sufficiency establishes the existence of a Bayesian

plausible distribution over beliefs by using the assumption that the benchmark information structure

is discrete. We also show that the non-existence of the beneficial agreement is equivalent to the

existence of welfare weights over the agents such that the weighted sum of agents’ expected payoffs

does not exceed the disagreement payoff. We further prove that there is a beneficial agreement

whenever for each coalition of a fixed size there is a belief such that the expected payoff is higher

than the disagreement one for all coalition members, lower for others, and the overall surplus is

positive. For general preferences, we prove the existence of a beneficial agreement whenever there is

information to share by the agents.

In section 4, we concentrate on environments, in which for each agent there is a state of the world

where the informed decision of the receiver generates the highest possible payoff for her. We call such

states as agent-states, and the other states, where this is not true, the agent-neutral states. We also

define agent-actions and neutral actions as the informed decisions at the agent-states and the agent-

neutral states, respectively. Within such environments, bargaining among the agents could boil down

to the agreement over the states where more information should be available to the receiver. We

define endorsement rules that fully reveal all agent-states, while implementing some censorship at

the agent-neutral state. Our results show that there is a Pareto efficient endorsement rule when the

informed decision of the receiver at the agent-states generates a higher total surplus than her other

actions while all agents prefer agent-actions to neutral ones. When the agents’ payoffs are symmetric,

and the prior belief is not biased towards any single agent-state, the symmetric endorsement rule

is efficient whenever it is beneficial against the no-information benchmark. This, along with the

proof that symmetric endorsement rule satisfies scale invariance and independence of irrelevant

alternatives, enables us to interpret endorsement rules as a Nash solution to the bargaining problem

among the agents.2

As an illustration of our model, consider the following example. A dictator represents an elite

faction and rules a country. Another elite faction holds key positions in the bureaucracy and may

contest the dictator’s power. There are three potential leaders: the dictator, the insider, who

represents the second elite faction, and an opposition leader. Citizens would like to support a

competent leader but do not know which one is the most competent. The prior belief of the citizens

that the opposition leader is the most competent is 0.4, while the corresponding probability for each

of the other candidates is 0.3. If the citizens support the dictator, she stays in power. The dictator

and the insider negotiate over the design of the transparency of political institutions that provide

or censor information about the competency of potential leaders.

Assume the following payoff structure. If citizens revolt against the dictator and support another

1Note that in some cases, an individually optimal information structure makes the receiver indifferent between
multiple actions for some signals. Then, our assumption of discrete benchmark information structure can be interpreted
as the condition that no individual monopolizes the disagreement stage by implementing her own individually optimal
information structure.

2We further show that Kalai-Smorodinsky and egalitarian bargaining solutions also coincide with the symmetric
endorsement rule in symmetric environments.
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Figure 1: The horizontal axis is the Insider’s expected payoff that some information structure can
generate, and the vertical axis shows the same for the Dictator. The symmetric endorsement rule is
efficient and corresponds to the Nash Bargaining solution.

leader, they incur a cost related to regime change. The cost of revolting is 0.05, while the benefit

of supporting the most competent leader is 1. If a leader gets to rule, she gets 1, and 0 otherwise.

Because of its high probability of being competent and low cost of revolting, the citizens support the

opposition if they do not receive further information. In this case, the dictator and the insider get 0.

Full information revelation makes each leader take power whenever she is competent. As a result, it

yields each of the negotiating factions an expected payoff of 0.3. The dictator prefers an information

structure that endorses her with full probability whenever the opposition leader is not the most

competent and endorses the opposition with probability 0.0526. The insider prefers a similarly

biased information structure. Note that the information structure must sometimes endorse the

opposition to be credible. If the dictator and the insider have the same bargaining power, the Nash

bargaining solution is a relevant approach. A symmetric endorsement rule generates an endorsement

for the dictator with full probability when she is the most competent and with probability 0.5 when

the opposition is the most competent. It works symmetrically for the insider. The symmetric

endorsement rule benefits the dictator and the insider regardless of whether the disagreement stage

leads to no information or full information revelation. The bargaining set of payoff profiles for this

example is illustrated in Figure 1.

This example reveals some of the insights that the model can generate. The symmetric agreement

between the two elite factions keeps the opposition from taking over the regime, while none of

the individually optimal information structures does. This agreement benefits both elite factions

compared to the disagreement scenarios that could lead to full or no information. Furthermore, the
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resulting information structure is fully transparent in the states where either of the two elite factions

is competent and fully censors information in the remaining case. This type of partial transparency

is novel compared to some of the other mechanisms noted in the literature, such as the trade-off

between credibility and persuasion [Boleslavsky et al., 2021, Gehlbach and Sonin, 2014] or lack of

enough resources for censorship [Guriev and Treisman, 2020].

In section 5, we discuss an application of our model to multiparty elections. We consider a

scenario where multiple political parties contemplate a joint campaign against the incumbent. We

show that there is a way for them to coordinate their electoral campaigns to maximize the probability

of the incumbent’s defeat. With the electoral campaign, each political party wins the upcoming

election whenever its policy platform is the best for voters. When the parties have substantial

ideological differences, such coordination might be easier than colluding on a single policy platform.

Our model is close to the recent work by Doval and Smolin [2021], which analyzes the set of payoff

profiles of types of players that some information structure can generate. The main application is

the interim payoffs that a single sender with multiple types might have. They also discuss the

population interpretation of their framework, where each state of the world corresponds to a type of

player in the population, and the prior belief corresponds to the population distribution of different

types. One can view our setup as a generalization of the second approach to the model in Doval and

Smolin [2021], where we explicitly distinguish the state space and the agent types. This distinction

enables us to treat the beliefs and the social welfare weights as separate objects and to capture a

wide range of applications.

Our paper is related to the literature on competition among multiple senders over information

structures. The canonical models of competitive persuasion by Gentzkow and Kamenica [2016] and

Gentzkow and Kamenica [2017] show that an increase in competition leads to more informative

outcomes. However, consecutive work by Li and Norman [2018] and Li and Norman [2021] show

that this result might depend on some factors, most importantly, on the timing of persuasion by the

senders [See also Bhattacharya and Mukherjee, 2013, Board and Lu, 2018, Hoffmann et al., 2020,

Au and Kawai, 2020, for some other related models]. The disagreement stage with partial or full

revelation as the benchmark information structure may capture the outcomes from some competitive

persuasion game in case of disagreement. In this sense, we consider environments where the senders

can collude before entering the competition.

The rest of the text is organized as follows. In section 2 we lay out our model and establish the

background for the analysis that follows. In section 3 we explore the conditions for the existence

of beneficial agreements. In section 4.1 we prove the results that establish the relation between

symmetry and transparency; while in section 4.2 we consider asymmetric environments. Finally, in

section 5 we discuss applications of our model. Section 6 concludes.

2 Model

Our setup focuses on a decision by a group of agents on how to provide information to a receiver.

To formalize this situation, it is useful to introduce a social planner who proposes an information

structure. Consider a persuasion game between a social planner and a receiver where the planner
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chooses an information structure that a finite set of agents can agree on. Let N = {1, . . . , n} be the

finite set of agents. There is a single receiver r. The state space is finite and denoted by Ω, and

let ∆(Ω) be the set of beliefs, µ ∈ ∆(Ω) denote any belief. We assume a symmetric information

environment and let µ0 ∈ ∆(Ω) be the common prior among the planner, the agents, and the

receiver. With an abuse of notation, let ω also denote the degenerate belief that the state is ω with

probability 1. Any belief µ ∈ ∆(Ω) is called interior if µ(ω) > 0 for any ω ∈ Ω. We assume that

the prior belief, µ0, is interior.

We assume that the set of pure actions that the receiver can take is finite and is denoted as A.

Let ur : A×Ω → R be the payoff function for the receiver and for any i ∈ {1, . . . , n} ui : A×Ω → R
be the payoff function for the agent i. Define the expected payoff of the receiver for playing a when

her belief is µ as

vr(a, µ) ≡
∑
ω∈Ω

µ(ω)ur(a, ω).

For any agent i ∈ N , vi(a, µ) is similarly defined. For any belief µ ∈ ∆(Ω) a(µ) denotes any

receiver-optimal action at belief µ. That is, a(µ) ∈ argmaxa′∈A vr(a
′, µ). Note that for any two

a(µ), a′(µ) ∈ A vr(a(µ), µ) = vr(a
′(µ), µ); however, the same may not hold for the agents. Therefore,

whenever the receiver is indifferent among multiple actions under some beliefs, the agents’ payoffs

might be non-trivially dependent on the particular choice of the receiver. Now, fix the receiver’s

optimal action profile {ā(µ)}µ∈∆(Ω). Then, we can define v̄i(µ) ≡ vi(ā(µ), µ) as the value of belief

µ ∈ ∆(Ω) for agent i ∈ N given the action profile {ā(µ)}µ∈∆(Ω) of the receiver.

Information Structure

An information structure π chooses a probability distribution at every state ω ∈ Ω over a signal

space. After observing the realized signal, the receiver updates her belief according to the Bayesian

rule and chooses an optimal action. It is without loss of generality to assume that the social planner

chooses a probability distribution over actions at each state of the world.3 As the action space is

finite we can represent such an information structure as a |A| × |Ω| probability matrix such that the

sum of each column is 1.

We call an information structure incentive compatible if the receiver finds it optimal to follow

the recommendations generated by the information structure. Fix any information structure π. For

any action a ∈ A, let µa denote the posterior belief after observing the recommendation a, which

can be calculated as for any ω ∈ Ω

µa(ω) =
π(a, ω)µ0(ω)∑

ω∈Ω π(a, ω′)µ0(ω′)
,

whenever π(a, ω) > 0 for some ω ∈ Ω. Then, an information structure is incentive-compatible if

for any a, a′ ∈ A and ω ∈ Ω, π(a, ω) > 0 implies that vr(a, µa) ≥ vr(a
′µa). The following remark

immediately follows from construction.

3Let Z denote any finite public signal space. Then, an information structure is a function π̂ : Z × Ω → [0, 1]
such that for any state ω ∈ Ω

∑
Z π̂(z, ω) = 1. We can define posterior beliefs {µπ̂(z)}z∈Z that can be generated

by the information structure π̂. Fix the action profile of the receiver. Then, for any a ∈ A define π(a, ω) ≡∑
{z∈Z|a=a(µπ̂(z)))} π̂(z, ω).
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Remark 1 Let Π be the set of incentive-compatible information structures. Π is a compact and

convex subset of [0, 1]|A|×|Ω|.

We can describe the timeline of the persuasion game as follows:

• The social planner publicly chooses and commits to an information structure π given the

common prior µ0.

• The nature draws the state of the world ω according to the common prior µ0 and a recom-

mendation a ∈ A realizes according to π.

• The receiver observes both the information structure π and the recommendation a, then she

updates her belief and chooses an optimal action.

An incentive-compatible information structure does not necessarily mean that the receiver always

follows a recommendation. The receiver may break ties randomly or according to any rule. To

make sure that the set of expected payoffs is compact, one can concentrate on sender-preferred

equilibria, where the receiver breaks ties in favor of the sender’s objective function [See Kamenica

and Gentzkow, 2011]. As we have multiple objective functions in our framework, it is not possible

to make a similar assumption. Instead, we assume that the receiver follows the recommendations of

any incentive-compatible information structure.4

Assumption 1 Let π be any incentive-compatible information structure. Whenever the receiver

observes the choice of the information structure π, she follows any recommendation generated by π.

For any incentive-compatible information structure π, Assumption 1 enables us to write the

expected payoff of the receiver (and any agent) directly in terms of recommendation probabilities as

follows:

Eπ v̄r(µπ) ≡
∑
ω∈Ω

µ0(ω)
∑
a∈A

π(a, ω)ur(a, ω).

As proved by Kamenica and Gentzkow [2011], the expected payoffs for a given information structure

can be written as expectations over a Bayesian plausible distribution over the posteriors. For any

information structure π, let τπ ∈ ∆(∆(Ω)) be the induced posterior distribution.5 Then

Eτ v̄r(µ) =
∑

µ∈supp(τ)

τ(µ)v̄r(µ),

and Eτ v̄r(µ) = Eπ v̄r(µπ) if τ is induced by π.

Each agent has a favorite information structure. However, agents have to agree on the information

structure they implement. If they cannot agree on an information structure, the game enters into a

disagreement stage. The outcome of the stage for each agent i ∈ N defines her disagreement payoff,

di. If agents fail to generate any credible information in case they disagree, di = v̄i(µ0). However, it

might also be possible in some contexts that the agents enter into a competitive disclosure game when

4An alternative way is to assume that the social planner can control the tie-breaking rule that the receiver follows.
See Doval and Smolin [2021] for a discussion.

5Note that supp(τπ) = {µa|a ∈ A and π(a, ω) > 0 for some ω ∈ Ω} and τπ(µa) =
∑

ω∈Ω µ0(ω)π(a, ω).
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they cannot agree. If that game results in full revelation, di =
∑

ω∈Ω µ0(ω)v̄i(µω). In general, we can

define a default information structure π0, and the induced Bayesian plausible posterior distribution

τ0, as the outcome of the disagreement stage, and define the disagreement payoffs as di ≡ Eτ0 v̄i(µ).

The Bargaining Set

The agreement among agents follows a given bargaining solution. The bargaining set consists of

payoff vectors that can be achieved by choosing an information structure and letting the receiver

choose a receiver-optimal action. Fix any action profile (ā(µ))µ∈∆(Ω) of the receiver. Let B ⊆ Rn

denote the bargaining set, which is defined as

B ≡ {(xi)i∈N ∈ Rn|∃π ∈ Π xi = Eπ v̄i(µπ) ∀i ∈ N}

With Assumption 1, it is possible to show that B is a compact and convex set (See Lemma 1

in Appendix A). Furthermore, following Doval and Smolin [2021], we can interpret the bargaining

set B as the convex cone of a vector-valued payoff function and extend the concavification result of

Kamenica and Gentzkow [2011] to our framework (See Proposition 4 in Appendix A).

A bargaining solution F : B → B, where B is the non-empty subsets of B, picks a vector of

payoffs from each subset of B. Our main focus is agent-efficient bargaining solutions, where the

solution should be Pareto efficient among the agents. Nash bargaining solution is an important

example of an efficient bargaining solution.

3 Beneficial Agreement

We say that there is a beneficial agreement whenever there is an information structure that strictly

benefits all agents relative to their disagreement payoffs. Clearly, if there is a Bayesian plausible

distribution of posterior beliefs that generate a higher payoff to all agents, then there is beneficial

agreement. However, it is possible to drop the requirement of Bayesian plausibility under some

conditions on the default information structure. Kamenica and Gentzkow [2011] show a similar

result when the receiver’s preference is discrete at the prior; that is, there is a unique optimal action

at the prior belief. We generalize this notion as follows.

Definition 1 Let π ∈ Π be any incentive-compatible information structure. π is called discrete if

for any a ∈ A π(a, ω) > 0 for some ω ∈ Ω implies that {a} = argmax vr(a(µa), µa).

Discrete information structures induce posterior beliefs where the receiver’s preferences are dis-

crete. The set of discrete information structures is a dense subset of the incentive-compatible infor-

mation structures6; however, it may not include some of the interesting information structures in

general. Assumption 2 below ensures that full revelation and no information are both discrete.

Assumption 2 At every state ω ∈ Ω, | argmaxa∈A vr(a, µω)| = 1 and | argmaxa∈A vr(a, µ0)| = 1.

6Note that we can arbitrarily approximate any incentive-compatible information structure with a discrete one in
terms of the posterior beliefs they induce. However, note that since the receiver might be indifferent in multiple
actions at some beliefs that are induced by some interesting information structures, the approximation in terms of
beliefs does not necessarily translate into approximation in payoffs.
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When the preferences of agents do not depend on states but only on actions, we can fully

characterize the existence of a beneficial agreement in terms of finite lotteries over posterior beliefs,

whether or not the lottery is Bayesian plausible or not. Assumption 3 formalizes the notion of state

independence.

Assumption 3 For any a ∈ A, ω, ω′ ∈ Ω, and i ∈ N ui(a, ω) = ui(a, ω
′).

Our first main result in this section is as below.

Theorem 1 Suppose that Assumptions 1 and 3 hold, the default information structure π0 is discrete,

and fix any optimal action profile (ā(µ))µ∈∆(Ω) by the receiver. Then the following are equivalent.

(i) There is a beneficial agreement.

(ii) There is a finite lottery over beliefs (λl, µl)
h
l=1 for some finite positive integer h such that for

any l = 1, . . . , h λl ∈ [0, 1] and
∑

l λl = 1 and for any agent i ∈ N∑
l

λlv̄i(µl) > di. (1)

(iii) There do not exist non-negative numbers y1, ..., yn which are not all equal to 0 such that for

any belief µ ∈ ∆(Ω) ∑
i∈N

yi(v̄i(µ)− di) ≤ 0. (2)

All the proofs are in Appendix A.

The first critical argument in the proof of Theorem 1 is to show that (ii) implies (i); that is, the

existence of any finite lottery that satisfies the inequality (1) is sufficient for a beneficial agreement.

The proof follows similar steps as the proof of Proposition 2 by Kamenica and Gentzkow [2011].

First, state-independence and the fact that π0 is discrete allow us to find an approximate interior

information structure π̂0 such that the receiver’s optimal actions do not change, and π̂0 leads to

exactly the same expected payoffs as π0 for all agents. As each belief induced by π̂0 is interior, we

can find beliefs that are close enough to the beliefs induced by π̂0 so that we can express all beliefs

induced by π̂0 as convex combinations of a belief in the support of the lottery and some other belief.

This enables us to construct a Bayesian plausible lottery over beliefs that leads to an expected payoff

higher than the one at the default information structure π0.

The second part of the proof of Theorem 1 is to show that either statement (ii) or the negation

of statement (iii) holds. For any finite collection of beliefs we can construct a matrix of expected

payoffs. Then, by an equivalent statement of Farkas’ Lemma [Perng, 2017], either there exists a

vector of beliefs such that statement (ii) holds, or there exists a set of weights over agents such that

the inequality (2) holds.

Theorem 1 enables us to find simple sufficient conditions for the existence of beneficial agreement.

Corollary 1 below shows that if for each agent the average payoff of full revelation is positive, then

there is a beneficial agreement.
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Corollary 1 Suppose that Assumptions 1 and 3 hold, the default information structure π0 is dis-

crete, and fix any optimal action profile (ā(µ))µ∈∆(Ω) by the receiver. If for any agent i ∈ N∑
ω∈Ω

1
|Ω|ui(a(ω), ω) > di, then there is a beneficial agreement.

The example below illustrates Corollary 1.

Example 1 Suppose that n = 2, Ω = {ω1, ω2, ω0}, and A = {a1, a2, a0} with ur(ai, ωj) = 1 if i = j,

and 0 otherwise. µ0 = (0.2, 0.2, 0.6). For each i, j ∈ N with i ̸= j, ui(ai) = 3, ui(aj) = −1, and

ui(a0) = −2.

For the example below, no information leads to −2 for all agents, while the full revelation leads to

−0.4 as the ex-ante expected payoff. However, the average revelation payoff is 0, which by Corollary 1

implies that there is a beneficial information structure whether the default information structure is

no information or full revelation. Set π(·, ω0) =
(
1
3 ,

1
3 ,

1
3

)
and π(ai, ωi) = 1 for each i ∈ N . The

expected ex-ante payoff corresponding to π is 0.8 for all agents.

The inequality (2) in Theorem 1 can be interpreted as the existence of a linear conflict of interest

between the agents. Whenever that is the case, there is no beneficial agreement. A linear conflict of

interest that prevents beneficial agreement can also arise among a subset of agents. The following

corollary points out an immediate but useful implication of Theorem 1.

Corollary 2 Suppose that Assumptions 1 and 3 hold, the default information structure π0 is dis-

crete, and fix any optimal action profile (ā(µ))µ∈∆(Ω) by the receiver. If there are two agents i, j ∈ N

such that for any belief µ ∈ ∆(Ω), v̄i(µ)− di = −(v̄j(µ)− dj), then there is no beneficial agreement.

The example below illustrates Corollary 2 and proves that the existence of excess total surplus

at every belief is not sufficient for the existence of a beneficial agreement.

Example 2 Consider an environment with Ω = {ω0, ω1, ω2, ω3}, A = {a0, a1, a2, a3} and N =

{1, 2, 3}. The payoff function of the receiver is such that āωi = ai. The payoff profile of the agents

satisfy for any belief v̄1(µ)− d1 = −(v̄2(µ)− d2),

v̄3(µ)− d3 = max{v̄1(µ)− d1, v̄2(µ)− d2},

and, u1(a1, ω1) > d1, while u2(a2, ω2) > d2.

In Example 2, in every belief µ ∈ ∆(Ω) at which at least one agent expects to receive a payoff

different than the disagreement payoff, the total payoff exceeds the total disagreement payoff. How-

ever, the “zero-sum” nature of the interests between the first two agents, prevents the existence of a

beneficial agreement. Theorem 2 below provides a general sufficient condition for the existence of the

beneficial agreement. The sufficient conditions imply that for every coalition of a fixed size among

agents, there exists a belief at which the coalition “wins” relative to no agreement. An implication

of this condition is that there are no groups of agents who are in conflict with each other at all

possible states.
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Theorem 2 Suppose that Assumptions 1 and 3 hold, the default information structure π0 is discrete,

and fix any optimal action profile (ā(µ))µ∈∆(Ω) by the receiver. If there exists k ∈ {1, . . ., n} such

that we can find a set of beliefs M ⊂ ∆(Ω) and for each ϕ ∈ Φ(k), where Φ(k) denotes the set of

subsets of {1, . . . , n} of size k, there is µϕ ∈ M that satisfies

∀i ∈ ϕ v̄i(µ
ϕ) > di

∀i′ /∈ ϕ v̄i′(µ
ϕ) < di′

∀ϕ ∈ Φ(k)

n∑
i′=1

(
v̄i′(µ

ϕ)− di′
)
> 0,

there is a beneficial agreement.

The proof of Theorem 2 is an application of the Separating Hyperplane Theorem. We first prove

the general Lemma 4 in Appendix A. For any fixed integer k ∈ {1, . . ., n}, for any subset of {1, . . ., n}
of size k suppose that there is a vector in Rn such that the components of the vector corresponding to

the subset of {1, . . ., n} are positive while others are negative, and the sum of components is positive.

Then, if there does not exist a convex combination of these vectors that is strictly positive, by the

Separating Hyperplane Theorem we can separate the set of convex combinations of these vectors

from the set of non-negative vectors. But this contradicts the fact that the sum of components of

all vectors is positive. Then, we apply Theorem 1 to show that there exists a beneficial agreement.

To illustrate the Theorem 2 above, consider a variant of the example that we discussed in the

Introduction. Suppose that there are three agents: the dictator, the military regime insider, and

the civilian regime insider, and a non-strategic opposition. The citizens would like to support the

competent agent or the opposition but do not know which one is. The dictator is competent with

probability 0.3, the military and civilian are each competent with probability 0.15, and the opposition

is competent with probability 0.4. As before, supporting a competent leader yields a payoff of 1

to the citizens; and supporting the civilian, military, or opposition involves a cost of 0.05 to the

citizens.

The Leader in Power

payoffs dictator civilian military opposition

dictator 1 0 0.5 0

civilian 0 1 −5 0

military −5 0 1 −8

total −4 1 −3.5 −8

Suppose that the benchmark information structure is full revelation. Then the expected dis-

agreement payoffs are 0.375 for the dictator, -0.6 for the civilian insider, and -4.55 for the military

insider; and the total is -4.75. Consider all pairs of agents. It is clear from the table that the pair

(dictator, civilian) gains relative to the benchmark if the dictator is in power while the military

loses relative to the benchmark. The pair (civilian, military) gains if civilian is in power while the

dictator loses. Finally, the pair (military, dictator) gains if the military is in power while the civilian
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loses. In all cases, the sum of payoffs exceeds the sum of payoffs under the benchmark. Hence, by

the previous Theorem, there exists a beneficial information structure relative to full revelation.

If for each agent i ∈ N there is a unique state of the world such that i is the unique winner when

the receiver learns the state but the total amount of loss is less than the win, there is a beneficial

agreement.

Corollary 3 Suppose that Assumptions 1 and 3 hold, the default information structure π0 is dis-

crete, and fix any optimal action profile (ā(µ))µ∈∆(Ω) by the receiver. Assume that |Ω| ≥ n. If there

exists an injection f : N → ∆(Ω) such that for any i ∈ N ui(ā(f(i))) > di but uj(ā(f(i))) < dj for

any j ̸= i and
n∑

j=1

uj(ā(f(i)))− dj > 0,

there is a beneficial agreement.

3.1 State-Dependent Payoffs

When the payoffs of agents are allowed to be state-dependent, the existence of any lottery of be-

liefs with a higher expected payoff is no longer generally sufficient for the existence of a beneficial

information agreement. In particular, when the default information structure is not interior; that

is, when some of the beliefs that it generates are not interior, then Theorem 1 may fail to hold.

Consider the following example.

Example 3 Suppose that n = 2, Ω = {ω1, ω2}, and A = {a1, a2} with ur(ai, ωj) = 1 if i = j, and 0

otherwise. The agents’ payoffs are such that u1(a1, ω1) = 2 = u2(a1, ω1), u1(a2, ω2) = 1 = u2(a2, ω2)

and 0 otherwise. µ0 = (0.5, 0.5), and the default information structure is full revelation.

In the example above, the optimal information structure is full revelation, which is also the default

information structure. Therefore, there is no beneficial information structure; however, there is a

belief µω1 where the payoff is 2, which is higher than the ex-ante payoff at the full revelation, which

is 1.5.

Suppose that Assumption 2 holds and the default is no information. Kamenica and Gentzkow

[2011] propose a condition called “information to share” for the existence of an information structure

that a single sender benefits from. We generalize this condition to lotteries of beliefs and any default

information structure as follows. Consider any lottery over a finite set of beliefs, which is denoted as

(λl, µl)
h
l=1 with

∑
λl = 1 and for any l = 1, . . . , h λl ∈ (0, 1). We say that a lottery over beliefs has

further information to share relative to some incentive compatible information structure π ∈ Π

if for any agent i ∈ N
h∑

l=1

λlv̄i(µl) >
∑

µ∈supp(τ)

τ(µ)

h∑
l=1

λlvi(a(µ), µl), (3)

where τ is the Bayesian plausible distribution over posterior beliefs induced by π. The idea is that

if all agents have some private information, represented by the lottery over beliefs (λl, µl)
h
l=1, none

of them would veto sharing this information with the receiver; because the expected payoff under
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not sharing this information (right-hand side of the inequality (3)) is lower than the expected payoff

of sharing it (left-hand side of the inequality (3)). The Proposition 1 result is the corresponding

sufficient condition of the existence of a beneficial agreement when the default information structure

is interior.

Proposition 1 Suppose that Assumption 1 holds and fix any optimal action profile (a(µ))µ∈∆(Ω) by

the receiver. Assume that π0 is discrete and interior. There is a beneficial agreement if there is a

lottery over beliefs (λl, µl)
h
l=1 that has further information to share relative to π0.

To illustrate the Proposition 1 above consider the following variant of the example that we

discussed in the Introduction. There are two agents, the dictator and the insider, and a non-

strategic opposition. The citizens would like to support the competent agent or the opposition but

do not know which one is. The dictator and insider are each competent with probability 0.3 and

the opposition is competent with probability 0.4. As before, supporting a competent leader yields

a payoff of 1 to the citizens; and supporting the civilian, military, or opposition involves a cost of

0.05 to the citizens. Now, we assume that the insider has state dependent preferences. In particular,

the insider gets 1 if dictator is in power and he is also competent; but gets -1 if the dictator is

incompetent. The dictator gets 1 only if he is in power and 0 otherwise. Finally, if opposition is in

power, the dictator gets -1, while the insider gets 0.

Suppose that the benchmark information structure is full censorship; hence, the opposition yields

the power in case the agents cannot agree on an information structure. Consider a trivial lottery

that always puts probability 1 on the dictator being competent. If citizens hold this belief, they

support the dictator. Hence, for both agents, the left-hand side of inequality (3) is equal to 1. With

probability 1, censorship yields a belief equal to the prior. Hence, the right-hand side of (3) is −1 for

the dictator and 0 for the insider. Proposition 1 ensures that an information structure that benefits

both agents compared to censorship exists. For instance, full revelation yields both agents a higher

ex-ante expected payoff than censorship.

Note that it is possible to state and prove a parallel of Theorem 2 using Proposition 1 above.

If for any coalition of fixed size, there is further information such that sharing this information

benefits the coalition members but hurts others; then we can find a lottery of beliefs that has further

information to share as in Proposition 1.

We make a final observation before concluding this section. If there is a beneficial agreement in

an environment, there should be a beneficial agreement in less antagonistic environments as well.

To formalize such a comparison, for any given optimal action profile (a(µ))µ∈∆(Ω), we say that

an environment with the preference profile (ui)i∈N is less antagonistic than an environment with

(u′
i)i∈N if for any belief µ ∈ ∆(Ω) and agent i ∈ N

v̄i(µ)− Eπ0
v̄i(µπ) ≥ v̄′i(µ)− Eπ0

v̄′i(µπ),

where v̄i(·) and v̄′i(·) are the expected value functions corresponding to the preference profiles (ui)i∈N

and (u′
i)i∈N respectively.

If an environment is less antagonistic than another, there is more surplus to share given each
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information structure. Remark 2 below formalizes this intuition.

Remark 2 If there is a beneficial agreement in any environment with the preference profile (ui)i∈N ,

then there is also a beneficial agreement in any environment that is less antagonistic.

4 Endorsement Rules and Symmetry

In this section, we concentrate on environments that can be completely described from the agents’

perspective. That is, for each state ω ∈ Ω, the corresponding informed action by the receiver leads to

either the best outcome for one of the agents or leads to an outcome that no agent prefers the most.

We call such environments as agent-partitional. More formally, an agent-partitional environment is

such that Ω = {ω0, ω1, . . . , ωn}, A = {a0, a1, . . . , an}, and for each i ∈ N argmaxa∈A ur(a, µωi
) = ai,

while for any j, l ∈ {0, 1, . . . , n} ui(ai, ωi) ≥ ui(aj , ωl). Based on this definition, we can label

the states {ωi}i∈N as the agent-states and the state {ω0} as the neutral state. Actions can be

partitioned in a similar way between agent-actions and the neutral action. As the receiver always

prefers more information, for any i ∈ N the receiver and the agent i have aligned interests regarding

full information at ωi. However, when the actions of the receiver are more important for the agents

than the states, there would be a conflict of interest between the receiver and agents at the neutral

state.

In such environments, a natural information structure to consider is the one that favors each agent

at the corresponding state by providing full information at that state. Fix any agent-partitional

environment; we call an information structure πe : A× Ω → [0, 1] an endorsement rule if for any

i ∈ N πe(ai, ωi) = 1 as πe recommends, in a credible way, the favorite action of each agent at the

associated state. Note that full disclosure is also an endorsement rule; moreover, full disclosure is

the only endorsement rule when there is no neutral state or action but all states and actions are

agent states and actions.

Throughout this section, we impose the following restriction on the Receiver’s payoffs to simplify

the exposition. For any i, j ∈ {0, 1, . . . , n}

ur(ai, ωj) =

xi, if i = j;

0, otherwise
(4)

where xi > 0.

4.1 Symmetry and Nash Bargaining

Fairness in bargaining solutions is usually captured by symmetry requirements such as the symmetry

of final payoffs or symmetry of the surplus relative to the disagreement payoff. One can interpret full

disclosure as an information rule that satisfies procedural symmetry because the amount of informa-

tion it provides at each state does not depend on which agent favors full information. However, the

resulting payoffs may not be symmetric if the prior distribution or agents’ payoffs are not symmetric.

If the environment is symmetric in both aspects, then full disclosure leads to symmetric outcomes.
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As we discussed in the example in the introduction, symmetry does not imply efficiency. Recall that,

there, a symmetric endorsement rule leads to a higher payoff for both agents than full disclosure.

We show below that a symmetric endorsement rule corresponds to a symmetric Nash Bargaining

solution, which is symmetric and efficient when the environment is symmetric. We define symmetric

environments below.

Definition 2 Consider an agent-partitional environment, so |Ω| = |A|. This environment is called

symmetric if for any permutation σ : N → N and i, j, l ∈ N ui(aj , ωl) = uσ(i)(aσ(j), ωσ(l)),

µ0(ωi) = µ0(ωσ(i)), and finally the receiver is indifferent among all agent states at the prior; that is,

vr(ai, µ0) = vr(aj , µ0).

Note that in a symmetric environment, the restriction in equation 4 implies that the Receiver’s

payoff for choosing the correct action at all agent states is constant. For the results below, denote

x ≡ ur(ai, ωi) for any i ∈ N , and x0 = ur(a0, ω0).

In a symmetric environment, any symmetric information structure would provide the same

amount of information at each of the agent-states so that no agent’s best scenario is favored in

terms of prior probabilities. A Pareto efficient information structure would provide enough infor-

mation in at least one of agent-states to make sure that the likelihood of the best scenarios of some

agents is not suboptimally low. Combining these two features proves that the symmetric endorse-

ment rule is both symmetric in terms of payoffs and Pareto efficient among the agents. Proposition 2

below provides sufficient conditions for the symmetric endorsement rule to be symmetric and effi-

cient. It proves further that it corresponds to the Nash Bargaining solution at the bargaining set

B.

Proposition 2 Suppose that Assumption 1 holds and consider any symmetric environment with

|Ω| = |A| = n + 1, Ω = {ω0, ω1, . . ., ωn}, A = {a0, a1, . . ., an}, and for any i ∈ {0, 1, . . . , n} the

optimal receiver action profile satisfies a(ωi) = ai and a(µ0) = a0.

Then the symmetric Nash, Kalai-Smorodinsky, and egalitarian bargaining solutions correspond

to a symmetric endorsement rule π if

• ∀j ̸= i :
∑

k uk(ai, ωi) ≥
∑

k uk(ai, ωj)

• ∀i ̸= 0 :
∑

k uk(ai, w0) ≥
∑

k uk(a0, w0)

Moreover, for any i ∈ N ,

πi0 =

 1
n , if x(1−µ0)

x0µ0
≥ 1

x(1−µ0)
nx0µ0

, otherwise

When there is no agent-neutral state and action, the symmetric endorsement rule reduces to full

disclosure.

Corollary 4 Suppose that Assumption 1 holds and consider any symmetric environment with |Ω| =
|A| = n, Ω = {ω1, . . ., ωn}, A = {a1, . . ., an}, and for any i ∈ {0, 1, . . . , n} the optimal receiver

action profile satisfies a(ωi) = ai, and she uniformly randomizes over all actions at µ0. Full dis-

closure corresponds to the symmetric Nash bargaining solution when an environment is symmetric
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and when full revelation is beneficial against a no-information benchmark, which is equivalent to the

condition below that must hold for any i, j, l ∈ N with i ̸= j ̸= l

ui(ai, ωi) + (n− 1)ui(aj , ωj) > ui(aj , ωi) + ui(ai, ωj) + (n− 2)ui(aj , ωl). (5)

4.2 Efficiency in asymmetric environments

When we allow for asymmetric environments, requiring symmetry from an agreement may not

be straightforward because an information structure that ensures either equal outcomes or equal

surplus relative to the disagreement payoffs may not provide the same amount of information at

each agent state. In other words, there could be a tension between consequential symmetry and a

procedural one. Nevertheless, the appeal of a Pareto efficient agreement may extend beyond the

symmetric environments. In this section, we provide sufficient conditions for the Pareto efficiency

of endorsement rules.

Consider any environment with |Ω| = |A| = n + 1, Ω = {ω0, ω1, . . ., ωn}, A = {a0, a1, . . .,

an}, and for any i ∈ {0, 1, . . . , n} the optimal receiver action profile satisfies a(ωi) = ai. For any

l, j ∈ {0, 1, . . . , n}, let Γlj ≡
∑

i∈N ui(al, ωj).

Assumption 4 Consider any environment with Ω = {ω0, ω1, . . ., ωn}, A = {a0, a1, . . ., an}, and
for any i ∈ {0, 1, . . . , n} the optimal receiver action profile satisfies a(ωi) = ai. The payoff profile

of agents satisfy for any i ∈ N , j, l ∈ {0, 1, . . . , n} with l ̸= j ui(al, ωj) > ui(a0, ωj) if l ̸= 0, and

Γii ≥ Γlj.

Note that Assumption 4 implies that any information structure that incentivizes the receiver to

play any action other than a0 with some positive probability is beneficial against the no-information

benchmark. Moreover, there is always an endorsement rule that is beneficial against the full infor-

mation benchmark. The existence of a Pareto efficient and beneficial endorsement rule is guaranteed

when there is additional surplus to share when the agent states are fully revealed.

Theorem 3 Consider any environment with |Ω| = |A| = n+1, Ω = {ω0, ω1, . . ., ωn}, A = {a0, a1,
. . ., an}, and suppose that Assumption 1 holds. For the receiver, assume that x0µ0(ω0) > xiµ0(ωi).

If Assumption 4 also holds, there is an incentive-compatible endorsement rule πe that is Pareto

efficient and beneficial relative to no or full information benchmarks.

It is possible to provide tighter conditions for the efficiency of endorsement rules when agents’

payoffs are state-independent. The first part of Theorem 4 below shows that the endorsement rule

is Pareto-efficient if there are social welfare weights so that the corresponding weighted sum of the

payoffs across the Receiver’s informed decisions at all agent-states are equal to each other. Note

that this condition does not require that for every non-neutral action (a ̸= a0) there is an agent that

finds this action optimal. Instead, this condition requires that each such action generates enough

surplus for every agent so that the agents may collectively agree to recommend this action with

positive probability along with other agent-actions. The second part of Theorem 4 shows that an

endorsement rule is efficient when the sum of agents’ payoffs at every agent-action is greater than
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the sum of their second-best payoffs. This rules out the existence of an agent-action that is almost

optimal for all agents, while all other actions hurt all agents except one.

Theorem 4 Consider any environment with |Ω| = |A| = n+1, Ω = {ω0, ω1, . . ., ωn}, A = {a0, a1,
. . ., an}, and suppose that Assumption 1 and 3 hold with the additional restriction that ui(aj) >

ui(a0) for any i, j ∈ N . For the receiver, assume that x0µ0(ω0) > xiµ0(ωi). Then there exists an

endorsement rule that is incentive-compatible, Pareto-efficient, and beneficial relative to no and full

information benchmarks, if

(i) there exist strictly positive weights {yi}i∈N such that for any j, j′ ∈ N∑
i

yiui(aj) =
∑
i

yiui(aj′),

(ii) or if for any j ∈ N ui(ai) > ui(aj) and∑
i

ui(aj) >
∑
i

usb
i ,

where for any i ∈ N usb
i ≡ maxj ̸=i ui(aj).

A special case for the conditions for Theorem 4 is the one that the payoffs of each agent are

constant at every agent-action that is not her optimal one.

Corollary 5 Consider any environment with Ω = {ω0, ω1, . . ., ωn}, A = {a0, a1, . . ., an}, and

suppose that Assumption 1 and 3 hold with the additional restriction that for any i, j, j′ ∈ N ui(ai) >

ui(aj) = ui(aj′) > ui(a0), and x0µ0 > xiµi holds for the Receiver. Then, there exists an endorsement

rule that is incentive-compatible, Pareto-efficient, and beneficial relative to no and full information

benchmarks.

When there are only two agents, the conditions in Theorem 4 reduce to that for any i, j ∈ N

with i ̸= j ui(ai) > ui(aj) > ui(a0). However, there is no straightforward generalization when there

are more than two agents.

Example 4 Consider an environment with n = 3, Ω = {ω0, ω1, ω2, ω3}, A = {a0, a1, a2, a3}. Sup-

pose that the payoffs of the agents are as follows: for any i ∈ N ui(ai) = 5, u1(a2) = u3(a2) = 4,

u1(a3) = u2(a1) = u2(a3) = u3(a1) = 1, while ui(a0) = 0. For the receiver, ur(ai, ωj) = 1 if i = j

and 0 otherwise. The prior belief is µ0 = (0.28, 0.24, 0.24, 0.24).

In the example above, any endorsement rule provides no greater than 3.8 as a payoff to agent

1 or 3 but agent 2’s individually optimal information structure provides 3.84 to both agents and

clearly more to agent 2.7 Intuitively, the agent-action a2 generates so much payoff to all agents that

it is easier to agree on giving agent 2 full bargaining power than implementing each agent action

with equal probability.

7The best endorsement rule for agent 1 recommends action 1 with full probability at state 0 and leads to 5(0.24+
0.28) + 0.24(4 + 1) = 3.8, while the agent 2-optimal incentive compatible information structure recommends action
2 with probability 0.24

0.28
, which leads to 4 ∗ 0.24 ∗ 4 = 3.84 as payoff to player 1.
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5 An Application to Multiparty Elections

The role of information in elections when there are at most two strategic candidates has been

extensively explored in the literature.8 However, the literature on competition in multiparty elections

is rather limited [See Shepsle, 2012]. In this section, we provide a simple model of informational

competition among multiple parties. With the help of this discussion, it is possible to detect a

mechanism where the opposition parties may prevail against an incumbent party with a pre-election

coordination [Golder, 2006] on political campaigns.

Consider an electoral political regime, where there are n+1 political parties indexed as {0, ..., n},
which are in competition with each other for the upcoming presidential election. Suppose that party

0 is the incumbent, and parties 1, ..., n are in opposition. For simplicity assume that the electoral

rule is simple plurality, and so the party that gets the highest share of votes wins the election9.

Consider a scenario, where the opposition parties cannot win the election against the incumbent

party without cooperating with each other because they have smaller voter bases compared to the

incumbent party. Recent relevant examples of pre-electoral cooperation among opposition parties

across the world include the one in Israel in 2019 - present [Makovsky, 2022], in Hungary in 2022

[Scheppele, 2022], and the one in Turkiye for the upcoming 2023 elections [Pitel, 2022]. For each party

i ∈ {0, 1, . . . , n} let γi ∈ (0, 1) denote the population share of partisan voters who always support

party i; while, let γr be the population share of swing voters who respond to the information revealed

during the election campaign period. Assume
∑n

i=1 γi < γ0 < γi + γr for any opposition party i so

that if an opposition party persuades all of the swing voters, it can win the election. Assume that

the payoff of an opposition party i ∈ {1, . . . , n} is 1 if it wins the election, βi < 1 if some other

opposition party wins, and 0 is the incumbent party wins.

Let Ω = {ω0, ω1, . . . , ωn} be the states of the world, where the realization of ωi means that party

i’s policy is the best for the swing voters. Assume that there is a common prior belief, µ0, among

the swing voters that favors the incumbent party so that if no further information is revealed during

the campaign period, the swing voters will support the incumbent party. If the opposition parties

cannot agree on a joint campaign, the incumbent party dominates the narratives formed during the

campaign period and prevents the revelation of any significant information during the campaign

period, which leads to its electoral victory. To prevent that outcome the opposition parties can run

a joint election campaign that minimizes the probability that the incumbent wins the election. We

concentrate on the case where the election campaign generates public information and the voting

behavior of swing voters are symmetric so that we can treat them as a single receiver.

The proposition below summarizes some of the implications of our general model above for this

environment.

Proposition 3 . Suppose that Assumptions 1 and 3 hold and fix any symmetric action profile of

the swing voters a(µ)µ∈∆(Ω). For any i, j ∈ {1, . . . , n},
8Some of the recent studies that use the Bayesian persuasion framework are Alonso and Câmara [2016a,b] Schnaken-

berg [2017], Bardhi and Guo [2018], Chan et al. [2019].
9Alternatively, one can think of a legislative election, where the party who gets the highest share of votes gets a

disproportionate advantage in terms of the share of seats in the legislative body.
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(i) if βi < 0 but 1 +
∑n

i=1 βi > 0, then there is a joint campaign that benefits all opposition parties

against the no-information benchmark.

(ii) if βi > 0, then there is a joint campaign, which endorses the opposition party i at the state

ωi, that is beneficial against the no-information benchmark and Pareto efficient among the

opposition parties.

(iii) if βi = βj > 0, µ0 assigns equal likelihood to each of the states {ω1, . . . , n}, and the swing voters

are ex-ante indifferent among the opposition parties, the endorsement rule above corresponds

to the symmetric Nash Bargaining rule among the opposition parties.

We skip the proof as the parts (i) to (iii) of Proposition 3 directly follow from Corollary 3,

Theorem 4, and Proposition 2 respectively.

Proposition 3 above shows a way out for the opposition parties without forming a full coalition by

supporting a single candidate against the incumbent. For instance, when βi < 0 for any opposition

party i, it might be hard for the opposition parties to form a joint electoral platform against the

incumbent and rule as a coalition party even after winning the election. Instead, a pre-electoral

cooperation among the opposition parties on an informative endorsement rule can substantially

improve the electoral outcome for them. With an endorsement rule each opposition party can win

the election with some positive probability. Furthermore, since this type of a campaign provides full

information at all states in {ω1, . . . , ωn}, it significantly improves the welfare of the swing voters.

6 Conclusion

This paper analyzes how a group of agents collectively decides on ways to persuade a receiver. We

prove results that characterize the possibility of agreement between agents. The overarching con-

clusion is that agreement is possible when every player can significantly gain from some belief of

the receiver compared to the status quo. We also study more specific situations where every agent

has a state that she would like to disclose to the receiver because the correct action in this state

benefits her. The receiver is trying to guess the state. In such cases, an information structure that

reveals agent-preferred states is Pareto-efficient and incentive compatible. Also, if the status quo

action does not correspond to any of such states, this rule benefits all agents relative to complete

censorship. We call this agreement the ”endorsement rule.” Finally, we discuss some political econ-

omy applications. However, our model pertains to many other scenarios, including but not limited

to industrial and financial regulation [Goldstein and Leitner, 2018], and contest design [Zhang and

Zhou, 2016, Antsygina and Teteryatnikova, 2022].

We assume that once the agents agree on an informational design, none of them can deviate.

More specifically, agents can not share extra information on top of what the group decided to provide.

This assumption is natural in authoritarian settings, where informational competition is restricted.

However, in other situations, it might be less plausible, and it is interesting which informational

agreements are robust to ex-post individual deviations. The answer is straightforward given the

assumptions of Theorem 3. In this setting, every agent has a state in which the receiver’s optimal
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action gives her the highest possible benefit. These states differ across agents. Finally, there is a

state such that all agents would like to avoid the corresponding action. Given these assumptions,

the endorsement rule is robust to individual deviations. If a state arises that some agent prefers,

the rule will recommend the receiver to take the corresponding action. Hence, the receiver will

think that the true state is either this one or the one that all agents want to avoid. Hence, no

agent can persuade the receiver to take her preferred action contrary to the recommendation. Extra

information could make the receiver choose the worst action for all agents. However, no agent would

share it. Conversely, if the information structure is not the endorsement rule, it misleads the receiver

in a state that some agent would prefer to disclose. Hence, no other information structure in this

setting is robust to individual deviations. Identification of environments where endorsement rules

are the only information structures robust to ex-post deviations is an interesting open question.
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A Proofs

A.1 Bargaining Set

Lemma 1 Suppose that Assumption 1 hold. The bargaining set B is compact and convex.

Proof B is bounded as A is finite and Π is compact by Remark 1. Now, take any converging

sequence of incentive compatible information structures {πl}l≥1 with limπl = π̄ ∈ Π. Then, for any

agent i ∈ {1, . . . , n}

limEπl
v̄i(µa) =

∑
a∈A

∑
ω∈Ω

limπl(a, ω)µ0(ω)ui(a, ω) = Eπ̄ v̄i(µa),

where the second equality follows from Assumption 1. Finally, to prove convexity take any two

payoff vectors v, v′ such that

v = (Eπ v̄i(µa))i∈{1,...,n} and v′ = (Eπ′ v̄i(µa))i∈{1,...,n}

for some two incentive compatible information structures π and π′. Fix an arbitrary λ ∈ (0, 1).

Consider the following information structure πλ that applies π with probability λ and π′ with the

remaining probability. Clearly, πλ is an incentive compatible information structure and for any

i ∈ {1, . . . , n}
Eπλ

v̄i(µa) = λEπ v̄i(µa) + (1− λ)Eπ′ v̄i(µa),

which proves the convexity of B. ■

Fix any optimal action profile {ā(µ)}µ∈∆(Ω) by the receiver. Recall that vi(µ) = Eµui(aµ, ω).

Let

v̂i(µ) =
∑
ω∈Ω

µ(ω)

µ0(ω)
ui(aµ, ω),

and v̂(µ) = (v̂1(µ)), . . . , v̂n(µ)).

Proposition 4 Suppose that Assumption 1 holds. Then,

B = {x ∈ Rn|(µ0, x) ∈ co(graph(v̂))}
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Proof The proof follows the same steps as the arguments provided by Doval and Smolin [2021] but

we provide the arguments below for completeness.

Take any payoff profile v ∈ B. By definition, there exists an incentive compatible information

structure π such that for any agent i ∈ {1, . . . , n} xi = Eπ v̄i(µπ) and π leads to a Bayesian plausible

distribution over beliefs. To see this let Prπ(a) =
∑

ω∈Ω π(a, ω)µ0(ω), and the expected posterior

belief induced by π at any state ω ∈ Ω

Eπµ(ω) =
∑
a∈A

Prπ(a)µa(ω) =
∑
a∈A

Prπ(a)
π(a, ω)µ0(ω)

Prπ(a)
= µ0(ω)

∑
a∈A

π(a, ω) = µ0(ω).

Now, for any agent i

xi = Eπ v̄i(µπ) =
∑
a∈A

∑
ω∈Ω

π(a, ω)µ0(ω)ui(µa, ω)

=
∑
a∈A

Prπ(a)
∑
ω∈Ω

µ0(ω)π(a, ω)

Prπ(a)

ui(a, ω)

µ0(ω)
=
∑
a∈A

Prπ(a)
∑
ω∈Ω

µa(ω)

µ0(ω)
ui(a, ω)

=
∑
a∈A

Prπ(a)v̂i(µa),

which implies that (µ0, v) ∈ co(graph(v̂)), where the weights are given by (Prπ(a))a∈A. Reversely,

for any element of co(graph(v̂)), we can find a probability distribution over posterior beliefs and

the corresponding values of v̂. Then, the calculation above enables us to interpret the weights as

probabilities given by an incentive compatible information structure, which further implies that the

corresponding payoff profile is in B. ■

A.2 Beneficial Agreement

We first prove the first part of Theorem 1 as stated by the following Lemma.

Lemma 2 Suppose that Assumptions 1 and 3 hold, the default information structure π0 is discrete,

and fix any optimal action profile (ā(µ))µ∈∆(Ω) by the receiver. There is beneficial agreement if and

only if there is a lottery over beliefs (λl, µl)
h
l=1 such that for any l = 1, . . . , h λl ∈ [0, 1] and

∑
l λl = 1

and for any agent i ∈ N ∑
l

λlv̄i(µl) > di. (6)

Proof Fix any discrete and incentive compatible information structure π0, and let τ0 be the induced

distribution over posterior beliefs with support {µ0k}k=1,...,g.

(⇐) Fix ε > 0 small enough so that for each k = 1, . . . , g the belief µ̂k = εµ0+(1−ε)µ0k satisfies

argmax{v̄r(µ̂k)} = argmax{v̄r(µ0k)}, and µ̂k is interior as µ0 is interior. Note that such ε exists

because π0 is discrete and so at each µ0k there is a unique receiver-optimal action.

Let’s define τ̂0 as for each k = 1, . . . , g τ̂0(µ̂k) = τ0(µ0k). Note that τ0 is Bayesian plausible by
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construction as it is induced by an information structure π0. Then,

g∑
k=1

τ̂(µ̂k)µ̂k =

g∑
k=1

τ̂(µ̂k)(εµ0 + (1− ε)µ0k)

εµ0 + (1− ε)

g∑
k=1

τ0(µ0k)µ0k = µ0.

Note further that for any agent i ∈ N ,

g∑
k=1

τ̂0(µ̂k)v̄i(µ̂k) =

g∑
k=1

τ̂0(µ̂k)ui(a(µ̂k)) =

g∑
k=1

τ0(µk)ui(a(µk)),

where the first equality holds by Assumption 3, and the second holds as τ̂0(µ̂k) = τ0(µk) and

a(µ̂k) = a(µk) for any k = 1, . . . , g.

Recall that (λl, µl)
h
l=1 is the lottery over beliefs that yields a higher expected payoff for all agents

compared to the disagreement payoff. For any belief µ̂k ∈ supp(τ̂0), µl define ηlk ∈ ∆(Ω) such that

γlkµl + (1− γlk)ηlk = µ̂k,

and a(ηlk) = a(µ̂k). Note that such beliefs {ηlk} and probabilities {γlk} exist as each µ̂k is interior

and the information structure defined by τ̂0 is discrete.

For all l define γ′
l ≡ mink γlk. Also define ϵ ≡ minl γ

′
l. Consider an information structure π as

follows. For any k, with probability τ̂0(µ̂k)
ϵλl

γ′
l
, it runs the lottery ((γlk, 1− γlk), (µl, ηlk)), and with

probability τ̂0(µ̂k)(1−
∑

l
ϵλl

γ′
l
) the belief µ̂k is realized. Observe the following

• ϵ
γ′
l
< 1 and

∑
l λl = 1 ⇒

∑
l
ϵλl

γ′
l
< 1

• The belief distribution induced by the information structure π is Bayesian plausible as

∑
k

τ̂0(µ̂k)

[∑
l

ϵλl

γ′
l

(γlkµl + (1− γlk)ηlk) +

(
1−

∑
l

ϵλl

γ′
l

)
µ̂k

]
=

∑
k

τ̂0(µ̂k)

[∑
l

ϵλl

γ′
l

µ̂k +

(
1−

∑
l

ϵλl

γ′
l

)
µ̂k

]
=
∑
k

τ̂0(µ̂k)µ̂k = µ0

Note that the last equality follows by construction of τ̂0.
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• For any agent i

Eπ[ui(a)] =
∑
k

τ̂0(µ̂k)

[∑
l

ϵλl

γ′
l

(γ′
lui(a(µl)) + (1− γ′

l)ui(a(µ̂k))) +

(
1−

∑
l

ϵλl

γ′
l

)
ui(a(µ̂k))

]

=
∑
k

τ̂0(µ̂k)

[
ϵ
∑
l

λlui(a(µl)) + ui(a(µ̂k))

(∑
l

ϵλl(1− γ′
l)

γ′
l

+ 1−
∑
l

ϵλl

γ′
l

)]

=
∑
k

τ̂0(µ̂k)

[
ϵ
∑
l

λlui(a(µl)) + ui(a(µ̂k))

(
1− ϵ

∑
l

λl

)]
= ϵ

∑
l

λlui(a(µl)) +
∑
k

τ̂0(µ̂k)ui(a(µ̂k)) (1− ϵ) >
∑
k

τ̂0(µ̂k)ui(a(µ̂k)) = di

Hence, the information structure π is beneficial.

(⇒) If there is a beneficial agreement, then there is a beneficial incentive compatible information

structure π and a corresponding Bayesian plausible distribution τ over beliefs. ■

For the second part of Theorem 1, we prove the following Lemma.

Lemma 3 Suppose that Assumptions 1 and 3 hold, the default information structure π0 is discrete,

and fix any optimal action profile (aµ)µ∈∆(Ω) by the receiver. Exactly one of the following is true:

(i): There is a beneficial agreement.

(ii): There exist non-negative numbers y1, ..., yn which are not all equal to 0 such that for any belief

µ ∈ ∆(Ω) ∑
i∈N

yi(v̄i(µ)− di) ≤ 0. (7)

Proof Applying Theorem 21 in Perng [2017], we get that for any matrix X exactly one of the

following is true

• There is a non-negative vector λ such that Xλ > 0.

• There is a non-negative and non-zero vector y such that XT y ≤ 0,

where XT is the transpose of the matrix. For any finite collection of beliefs η = {µi}hi=1, set

X(η) ≡ (xij) = v̄i(µj)− di

In other words, an entry at ith row and jth column is the difference between agent i’s expected

payoff given belief µj and her disagreement payoff.

Suppose that there exists a beneficial information structure. By Lemma 2, there exists a finite

collection of beliefs η = {µi}hi=1 and a vector of non-negative numbers λ such that for any agent i∑
j

λj v̄i(µj) > di ⇔
∑
j

λj(v̄i(µj)− di) > 0
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This statement is equivalent to there being a non-negative vector λ = (λ1, ..., λn) such that X(η)λ >

0. Then, Theorem 21 in Perng [2017] implies that there is no non-negative and non-zero vector y

such that X(η)T y ≤ 0. Hence, for any non-negative numbers y1, ..., yn that are not all equal to 0

there exists a belief µj ∈ η such that ∑
i

yi(v̄i(µj)− di) > 0

and the second condition is not satisfied.

Suppose now that there are non-negative numbers y1, ..., yn that are not all equal to 0 such that

for any agent j and belief µ ∑
j

yj(v̄i(µj)− dj) ≤ 0

Then for any collection of beliefs η = {µj}hj=1, X(η)T y ≤ 0 where y = (y1, ..., yn). The Theorem 21

in Perng [2017] implies that there is no non-negative vector λ such that X(η)λ > 0. Hence, there is

no beneficial agreement by Lemma 2. ■

The proof of Theorem 2 follows from the Lemma 4 below.

Lemma 4 Fix any k ∈ {1, . . . , n}. Let Φ(k) be set of all subsets of {1, . . . , n} of size k. For each

ϕ ∈ Φ(k), fix a single vector sϕ ∈ Rn such that

n∑
j=1

sϕ(j) > 0

∀j ∈ ϕ sϕ(j) > 0 but ∀j /∈ ϕ sϕ(j) < 0.

Let S = {sϕ}ϕ∈Φ(k). Then, there exists s ∈ co(S) such that s > 0.

Proof: Fix any k ∈ {1, . . . , n} and let S be constructed as in the hypothesis. Note that for any ϕ ∈
Φ(k), there is at most one sϕ ∈ S that satisfies the properties stated in the hypothesis. Equivalently,

for any ϕ, ϕ′ with ϕ ̸= ϕ′ and sϕ, sϕ
′ ∈ S there is j ∈ {1, . . . , n} such that sϕ(j) > 0 > sϕ

′
(j).

Suppose for a contradiction that Rn
+ ∩ co(S) = ∅. As Rn

+ is a convex set, by the Hyperplane

Separation Theorem (Boyd et al. [2004]) there exists c ∈ R, ν ∈ Rn\{⃗0} such that for any x ∈ Rn
+

and y ∈ co(S) ⟨x, ν⟩ ≥ c ≥ ⟨y, ν⟩.
Now, we prove a couple of claims.

Claim 1: c ≤ 0.

Proof For any λ > 0, λ1⃗ ∈ Rn
+ ⇒ ⟨λ1⃗, ν⟩ ≥ c ⇒ limλ→0⟨λ1⃗, ν⟩ = 0 ≥ c. □

Claim 2: ν ≥ 0.

Proof Suppose to the contrary that there exists i ∈ {1, . . . , n} with ν(i) < 0. Fix λ > 0 and

t ∈ Rn
+ with t(i) = λ but for any j ̸= i t(j) = ε > 0 for some ε small enough. Then, limλ→∞⟨t, ν⟩ =

−∞ < c, a contradiction. □

Given the claims above, WLOG ν(1) ≥ ν(2) ≥ . . . ≥ ν(n) and ϕ ∈ {1, . . . , k}. Observe that for
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ϕ = {1, . . . , k},

⟨sϕ, ν⟩ =
n∑

j=1

sϕ(j)ν(j) =

k∑
j=1

sϕ(j)ν(j) +

n∑
j=k+1

sϕ(j)ν(j).

Case 1: ν(k) > 0. As ∀j ≤ k sϕ(j) > 0 and j > k sϕ(j) < 0,

k∑
j=1

sϕ(j)ν(j) ≥
k∑

j=1

sϕ(j)ν(k), and

n∑
j=k+1

sϕ(j)ν(j) ≥
n∑

j=k+1

sϕ(j)ν(k)

⇒ ⟨sϕ, ν⟩ ≥ ν(k)

n∑
j=1

sϕ(j) > 0 ≥ c,

a contradiction.

Case 2: ν(k) = 0. Then ∀j > k ν(j) = 0 and since ν ̸= 0⃗ ν(1) > 0. ⇒
∑k

j=1 s
ϕ(j)ν(j) > 0 =∑n

j=k+1 s
ϕ(j)ν(j) ⇒ ⟨sϕ, ν⟩ > 0 ≥ c, a contradiction. ■

Proof of Theorem 2

Suppose that there is k and M ⊂ ∆(Ω) as described in the hypothesis. By Lemma 4 there exists

a collection of weights {λl}l=1,...,|Φ(k)| with
∑

l λl = 1 such that for each agent i = 1, . . . , n∑
l

λlv̄i(µl)− di > 0.

Then, by Theorem 1, there is a beneficial agreement. ■

Proof of Proposition 1

Fix any discrete, interior, and incentive compatible information structure π0, and let τ0 be the

induced distribution over posterior beliefs with support {µ0k}k=1,...,g. For each µl, we can find

γkl ∈ (0, 1) and ηkl with a(ηkl) = a(µk) such that

µk = γklηkl + (1− γkl)µl.

Fix any ϵ ∈ (0,mink,l(1 − γkl)). Consider the following information structure that implements µk

with probability

τ0(µk)

(
1−

h∑
l=1

ϵλl

1− γkl

)
,

and implements ηkl with τ0(µk)
ϵλl

1−γkl
γkl, while µl with τ0(µk)

ϵλl

1−γkl
(1−γkl). Note that there is such

an information structure, since the induced distribution over the beliefs is Bayesian plausible.
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Now, the expected payoff of any agent i ∈ N under this information structure is

g∑
k=1

τ0(µk)

h∑
l=1

(
ϵλl

1− γkl
(γklEηkl

ui(a(ηkl), ω) + (1− γkl)Eµl
ui(µl, ω))

)

+

g∑
k=1

τ0(µk)

(
1−

h∑
l=1

ϵλl

1− γkl

)
Eµk

ui(a(µk), ω). (8)

The second terms with Eµl
ui(µl, ω) simplifies and satisfies the following inequality by the assumption

in the hypothesis

ϵ

g∑
k=1

τ0(µk)

h∑
l=1

λlEµl
u(a(µl), ω) = ϵ

h∑
l=1

λlEµl
u(a(µl), ω) > ϵ

g∑
k=1

τ0(µk)

h∑
l=1

λlEµl
u(a(µk), ω).

Then, combining the right-hand side of the inequality above with the first term in the expression (8)

yields the following

g∑
k=1

τ0(µk)

h∑
l=1

(
ϵλl

1− γkl
(γklEηkl

ui(a(ηkl), ω) + (1− γkl)Eµl
ui(a(µk), ω))

)
,

but as a(ηkl) = a(µk) and expectation is linear in beliefs when the receiver’s action is fixed we get

g∑
k=1

τ0(µk)

(
h∑

l=1

ϵλl

1− γkl

)
Eµk

ui(a(µk), ω).

Combining the expression above with the third term in the expression (8) shows that the expected

payoff for agent i is strictly greater than the following

g∑
k=1

τ0(µk)

(
h∑

l=1

ϵλl

1− γkl

)
Eµk

ui(a(µk), ω)

+

g∑
k=1

τ0(µk)

(
1−

h∑
l=1

ϵλl

1− γkl

)
Eµk

ui(a(µk), ω) = Eτ0Eµui(a(µ), ω).

This establishes that this information structure is beneficial compared to π0. ■

A.3 Endorsement Rules

Proof of Proposition 2

Let’s first define a bargaining solution over B that corresponds to the symmetric endorsement

rule. For any compact and convex subset B′ ⊆ B, let

fser(B′) =

E⃗ser if E⃗ser ∈ B′

E⃗NB if E⃗ser /∈ B′,
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where E⃗ser is the vector of payoffs to all agents corresponding to the symmetric endorsement payoff

and E⃗NB is the payoff vector that corresponds to the Nash bargaining solution from any subset

B′. We show below that the solution fser(B′) satisfies the axioms that characterize the Nash

bargaining solution. These axioms are Pareto efficiency, symmetry, scale invariance, and contraction

independence (independence of irrelevant alternatives) as described in Thomson [1994]. Symmetry,

scale invariance, and contraction independence are trivially satisfied as the payoffs at symmetric

endorsement rule are symmetric, linear in payoff parameters, and constant over all the subsets B′

as long as E⃗ser ∈ B′. We prove the Pareto efficiency below.

To simplify the notation, write µi ≡ µ0(ωi). Fix an arbitrary information structure π ∈ Π. Write

the sum of agents’ expected payoffs as∑
j,i

µiπji

∑
k

uk(aj , ωi) =
∑
i ̸=0

µiπii

∑
k

uk(ai, ωi) +
∑
i ̸=0

µi

∑
j ̸=i,0

πji

∑
k

uk(aj , ωi)+∑
i ̸=0

µiπ0i

∑
k

uk(a0, ωi) + µ0

∑
j ̸=0

πj0

∑
k

uk(aj , ω0)+

µ0π00

∑
k

uk(a0, ω0)

Using the properties of the symmetric environment, write

v1 ≡
∑
k

uk(ai, ωi)

where i ̸= 0 and

v2 ≡
∑
k

uk(aj , ωi)

where j ̸= 0, i and i ̸= 0

v3 ≡
∑
k

uk(a0, ωi)

where i ̸= 0 and

v4 ≡
∑
k

uk(aj , ω0)

where j ̸= 0 and

v5 ≡
∑
k

uk(a0, ω0)

Recall that for any i, j ̸= 0 : µi = µj and therefore µi =
1−µ0

n . The expression above becomes

∑
i ̸=0

(1− µ0)

n
πiiv1 +

∑
i ̸=0

(1− µ0)

n
(1− πii − π0i)v2

+
∑
i ̸=0

(1− µ0)

n
π0iv3 + µ0(1− π00)v4 + µ0π00v5 =

(1− µ0)

n

∑
i ̸=0

[v1πii + v2(1− πii − πi0) + v3π0i] + µ0 [v4 − (v4 − v5)π00]
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By assumption, v1 ≥ max{v2, v3}, which implies

(1− µ0)

n

∑
i ̸=0

[v1πii + v2(1− πii − πi0) + v3π0i] + µ0 [v4 − (v4 − v5)π00] ≤

(1− µ0)v1 + µ0 [v4 − (v4 − v5)π00]

Also notice that by assumption, v4 ≥ v5, and therefore the expression µ0 [v4(1− π00) + π00v5] de-

creases in π00. In the rest of the proof, we will use bounds on π00 to show that the symmetric

endorsement rule generates the highest sum of expected payoffs for the agents.

If the recommended action is ai for some i ̸= 0, the Receiver prefers ai over a0 iff

x
πiiµi∑
k πikµk

≥ x0
πi0µ0∑
k πikµk

⇔ xπiiµi ≥ x0πi0µ0

Substituting µi =
1−µ0

n yields

xπii
1− µ0

n
≥ x0πi0µ0 ⇔ xπii(1− µ0) ≥ nx0πi0µ0

We proceed by analysing two cases. Suppose first that x(1−µ0)
x0µ0

≥ 1. Consider a symmetric en-

dorsement rule such that π00 = 0 and for any i ̸= 0 : πi0 = 1
n . Substituting these values into the

constraint above yields

x(1− µ0) ≥ x0µ0.

which holds by assumption. Clearly, given the symmetric endorsement rule, the receiver will not

choose action aj if the recommendation is ai for i, j ̸= 0. Hence, the receiver will follow all recommen-

dations of the information structure. The sum of agents’ expected payoffs will be (1−µ0)v1 +µ0v4.

Hence, a symmetric endorsement rule maximizes the sum of expected payoffs for the agents and is

Pareto-efficient.

Suppose now that x(1−µ0)
x0µ0

< 1. Summing the constraints on πii and π0i yields

∑
i ̸=0

πii
x(1− µ0)

n
≥
∑
i̸=0

x0πi0µ0 ⇔ x(1− µ0)

n

∑
i ̸=0

πii ≥ x0µ0(1− π00) ⇔

π00 ≥ 1−
∑
i̸=0

x(1− µ0)

nx0µ0
πii ≥ 1− x(1− µ0)

x0µ0

It follows that

(1− µ0)v1 + µ0 [v4 − π00(v4 − v5)] ≤ (1− µ0)v1 + µ0

[
v4 −

(
1− x(1− µ0)

x0µ0

)
(v4 − v5)

]
Now, consider a symmetric endorsement rule such that for any

i ̸= 0 : πi0 =
x(1− µ0)

nx0µ0
, and π00 = 1− x(1− µ0)

x0µ0
.
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Observe that for any i ̸= 0 :

xπiiµi =
x(1− µ0)

n
= x0

x(1− µ0)

x0µ0n
µ0 = x0πi0µ0

Hence, if the recommended action is ai where i ̸= 0, the Receiver will prefer action ai over a0.

Observe that for any i, j ̸= 0 : πji = 0 and π0i = 0, therefore if the recommended action is ai,

the Receiver will prefer it over any action aj . Hence, the π is an incentive-compatible information

structure. The sum of agents’ expected utilities will be exactly

(1− µ0)v1 + µ0

[
v4 −

(
1− x(1− µ0)

x0µ0

)
(v4 − v5)

]
Hence, the symmetric endorsement rule maximizes the sum of expected payoffs and is therefore

Pareto-optimal.

It follows from the argument above that an information structure given which the Receiver

always stays with the prior yields a lower sum of expected payoffs for the agents compared to the

information structure above. By symmetry, under both information structures, each agent gets the

same payoff. Hence, the information structure above is beneficial for each agent.

We can also show that the symmetric endorsement rule corresponds to the Kalai-Smorodinsky

and egalitarian bargaining solutions. To prove the first fact, consider a vector η where

ηi = max
π

Eπ v̄i(µπ)

By symmetry, for any i, j ηi = ηj and di = dj . Hence, the same is true for all vectors that lie on

the line that connects the vectors η and d = (d1, . . . , dn). The Kalai-Smorodinsky solution selects

the point on this line that intersects the boundary of the feasible payoff set (Thomson [1994]). The

symmetric endorsement rule yields a payoff vector the coordinates of which are equal to each other.

Hence, this vector belongs both to the line and the feasible payoff set. If it lies in the interior of the

payoff set, then there is another point on the line where each coordinate is greater by ϵ, where ϵ is

sufficiently small. This contradicts the fact that the endorsement rule maximizes the sum of agents’

payoffs over all information structures. By the same argument, the endorsement rule yields a payoff

vector that is a maximal point of equal coordinates among points in the feasible payoff set. Hence,

it also corresponds to the egalitarian solution ((Thomson [1994]))

■

Proof of Corollary 4 Define v1 to v5 as in the proof of Proposition 2. Then, the inequality in

(5) reduces to v1 ≥ v2. A similar argument as in the proof of Proposition 2 shows that full disclosure

is Pareto efficient. ■

Proof of Theorem 3 Take any incentive compatible information structure π that recommends

all actions {a1, . . . , an} with positive probability. Note that the set of such incentive compatible

information structures is not empty as full-revelation information structure is always incentive com-

patible. Define an endorsement rule πe such that for any i ∈ N πe
ii = 1 but for any i ∈ {0, 1, . . . , n}

πe
i0 = πi0.
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Claim 1: πe is also incentive compatible and beneficial relative to no-information or full-revelation

benchmark.

Proof As π is incentive compatible, for any i, i′ ∈ {0, 1, . . . , n}

Eµπ
ai
ur(ai, ω) ≥ Eµπ

ai
ur(ai′ , ω) ⇔

µ0(ωi)πiiur(ai, ωi) ≥ µ0(ωj)πijur(aj , ωj). (9)

For the incentive compatibility of πe, for any i ∈ {1, . . . , n}

µ0(ωi)ur(ai, ωi) ≥ µ0(ω0)πi0ur(a0, ω0),

which holds by equation 9. Therefore, the receiver has an incentive to follow any recommendation

ai, and as µπe

a0
(ω0) = 1, receiver also follows the recommendation a0.

For any agent i ∈ N , πe is beneficial relative to no-information benchmark if∑
j ̸=0

µ0(ωj)ui(aj , ωj) + µ0(ω0)
∑
j

π(aj , ω0)ui(aj , ω0) >
∑
j ̸=0

µ0(ωj)ui(a0, ωj) + µ0(ω0)ui(a0, ω0),

which holds by Assumption 4. πe is also beneficial against full-revelation benchmark as it differs from

full-revelation only at state ω0 and at that state πe recommends some agent-actions with positive

probability. □

Claim 2: The total expected payoff of all agents under πe is not smaller than under π.

Proof The total equally weighted expected payoffs of agents under π can be written as∑
i ̸=0

µ0(ωi)πiiΓii +
∑
i

∑
j ̸=i,0

µ0(ωj)πijΓij + µ0(ω0)
∑
i

πi0Γi0,

while the corresponding sum under πe is∑
i ̸=0

µ0(ωi)Γii + µ0(ω0)
∑
i

πi0Γi0,

and πe leads to a higher total sum if∑
i ̸=0

µ0(ωi)(1− πii)Γii ≥
∑
i

∑
j ̸=i,0

µ0(ωj)πijΓij ,

which holds by Assumption 4 because∑
i ̸=0

µ0(ωi)(1− πii)Γii ≥ min
i∈N

Γii

∑
i̸=0

µ0(ωi)(1− πii) ≥ max
{i,j|i̸=j ̸=0}

Γij

∑
i ̸=0

µ0(ωi)(1− πii)

= max
{i,j|i ̸=j ̸=0}

Γij

∑
i̸=0

µ0(ωi)
∑
j ̸=i

πji = max
{i,j|i ̸=j ̸=0}

Γij

∑
j ̸=0

∑
i ̸=j

µ0(ωj)πij

= max
{i,j|i ̸=j ̸=0}

Γij

∑
i

∑
j ̸=i,0

µ0(ωj)πij ≥
∑
i

∑
j ̸=i,0

µ0(ωj)πijΓij .
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This implies, π cannot Pareto dominate πe. □

Now, pick any incentive compatible information structure π that also maximizes the total ex-

pected payoffs of all agents. Then by Claim 2, there exists an endorsement rule that leads to at least

the same total payoff; hence it is Pareto efficient. As by Claim 1, πe is also beneficial and incentive

compatible, the hypothesis follows. ■

Proof of Theorem 4 (i) A player has the same preferences if her utility function is multiplied

by a positive constant. For any player k and action ai, define a new utility function

ũk(ai) ≡ wkuk(ai)

For any i, j ̸= 0 ∑
k

ũk(ai) =
∑
k

ũk(ai, ωi) =
∑
k

ũk(aj , ωi) =
∑
k

ũk(aj)

Therefore, Assumption 4 is satisfied. By Theorem 3, there exists an endorsement rule which is

incentive compatible, Pareto-efficient, and beneficial relative to no disclosure.

(ii) A player has the same preferences if a constant is added to her utility function. For every

player k and action ai, define a new utility function

ũk(ai) ≡ uk(ai)− usb
k − ϵ

where ϵ > 0. Choose ϵ sufficiently small so that for any i
∑

k ũk(ai) > 0. Construct a matrix U

where the element in ith row and kth column is ũk(ai). Observe that for any i, k such that i ̸= k

uk(ai) < 0 and uk(ak) > 0. Because the non-diagonal elements are negative, U is a Z-matrix.

Because no element is equal to 0, the matrix is irreducible. Let 1 define the vector where all entries

are equal to 1. Because for any i
∑

k ũk(ai) > 0, U1 > 0. By Theorem 2.7 in Chapter 6 of Berman

and Plemmons [1979], U−1 exists and has strictly positive entries. Consider the equation

Uw = 1

Because U−1 exists, we can rewrite the equation as

U−1Uw = U−11 ⇔ w = U−11 > 0

Hence, w is a strictly positive vector such that for any i, j ̸= 0∑
k

w̃kuk(ai) = 1 =
∑
k

w̃kuk(aj)

Therefore, the condition in (i) is satisfied and there exists an incentive compatible and Pareto-

efficient endorsement rule that is beneficial relative to no disclosure. ■
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