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Abstract

Ortner and Chassang (2018) show how a principal can make corruption harder by ran-
domising the monitor’s incentives. We develop their idea by randomising the agent’s
incentives too. We find that the cheapest way to deter corruption is to enter the agent and
the monitor into a special lottery. First, both players observe a secret uniform draw (their
lottery number). Then, if the monitor reports hard evidence, the player with the higher
draw wins a monetary prize proportional to the difference between the two draws. This
creates a two-sided adverse selection problem in the market for evidence suppression. If
a player expects to win the lottery, then they want the monitor to report the evidence.
Thus, a player leaves the market if they draw the highest possible number. But then a
player with the second highest possible number reasons that they must have the highest
number on the market, so they leave too. The market unravels with each round of reason-
ing, and collapses altogether. This mechanism is robust to monitoring mistakes, limited
liability and mediated side contracting, and exemplifies worst case information.
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1 Introduction

Corruption and the perceived threat of corruption both undermine the effectiveness of
real world institutions1. For example, Duflo et al. (2013) study factory owners (agents)
who find it cheaper to bribe pollution inspectors (monitors) to report compliance, than
to actually be compliant with pollution regulations. One way to deter this kind of cor-
ruption is to outbid the agent by rewarding the inspector for providing hard evidence of
non-compliance2, but this can be expensive if cost of compliance is high. Recent research
by Ortner and Chassang (2018); Baliga and Sjöström (1998) and von Negenborn and Poll-
rich (2020) show that corruption can be deterred more cheaply by random incentives for
the monitor. in this paper, we find an even cheaper way to deter corruption by jointly
designing random incentives for both the monitor and the agent. We call it the two-sided
lemons scheme. It is the cheapest in a large class of mechanisms it is robust in following
senses: it fully implements compliance by the agent; it accommodates imperfect moni-
toring; it respects limited liability constraints for the agent and the monitor; and it deters
a large class of corrupt side contracts (including bilateral bribe contracts).

As well as deterring corruption cheaply and robustly, the two-sided lemons scheme
has features that are of independent interest. Firstly, and as the name suggests, it engi-
neers a two-sided adverse selection (“lemons”) problem in the market for corruption. In
the classic lemons story (Akerlof, 1970), only the seller has private information about the
value of the good being traded. Unravelling occurs because of a feedback loop between
falls in price and falls in the buyer’s expected value of the good on the market. Specifi-
cally, sellers with the most valuable goods leave the market when prices fall, which causes
the average value of goods on the market to fall, causing the price to fall further, and so
on. In our two-sided lemons story, the buyer and the seller both receive private informa-
tion about the value of the good. Unravelling occurs at each individual price level because
of a feedback loop between falls in the buyer’s expected value of the good on the market,
and rises in the seller’s expected value. Specifically, the first seller types to leave the mar-
ket are those with the highest estimation of the value of the good (‘high’ sellers). If they
leave the market, then the buyer’s expected value of the good falls, so the buyer types
with the lowest expected value of the good (‘low’ buyers) leave the market. This increases
the seller’s expected value of the good, and hence the next highest sellers leave. The cycle
continues until all buyer and seller types leave the market, and the market collapses. The
logic is also similar to the “winner’s curse” in auction theory.

Secondly, the two-sided lemons problem offers a worst case distribution over payoffs
and signals in the sense that it maximises the expected gains from trade subject to a “no
trade” constraint. This answers an open problem about how much surplus can be de-
stroyed by information asymmetry in a bilateral trade setting with a given distribution
over values. Previously, Carroll (2016) found that when the price of trade is fixed, the an-

1Recent examples include Tacconi and Williams (2020); Bahoo et al. (2020); Gründler and Potrafke
(2019); Isaksson and Kotsadam (2018).

2See, for example, Tirole (1986); Kofman and Lawarrée (1993); Laffont and Martimort (2002).
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swer is always ‘none’, because it is possible construct a public information structure that
delivers the same outcome as any arbitrary information structure. We find that when the
traders are able to negotiate a price, the answer can be as high as ‘all of it’ for some value
distributions. This is because the public distributions that Carroll constructs cannot de-
ter trade at more than one price at a time, whereas asymmetric information can deter
trade at all prices simultaneously. This insight is also pertinent to the recent literature on
robustness, which seeks to determine, for a given payoff structure, the worst case equilib-
rium that can arise under arbitrary perturbations of the information structure (Kajii and
Morris, 1997; Morris and Ui, 2005).

We also make two important methodological contributions in proving our main re-
sults. Firstly, to prove that the two-sided lemons scheme deters every voluntary, incentive
compatible and budget balanced side contract, we establish that each player’s expected
transfer can be found by integrating the cumulative increments of the transfers paid by
each type. Secondly, in proving that any arbitrary trade-deterring mechanism costs at
least as much as ours, we show how to overcome a transfinite induction problem in or-
der to generalise a result of Carroll (2016) to establish that unravelling affects a whole
continuum of types.

The outline of the paper is as follows. The next section demonstrates the two-sided
lemons scheme in the context of a simple example. Section 3 then describes our contribu-
tion to the literatures on corruption, adverse selection, and information design. Section 4
defines an auxiliary ”trade problem” that captures the essence of what it means to deter
bribes. In the trade problem, a designer chooses a joint distribution over private signals
and transfers for a buyer and a seller, in order to implement a “no trade” outcome (deter
trade), whilst minimising the expected sum of transfers to the buyer and the seller (the
cost). Section 5 contains our main results: a definition of the two-sided lemons scheme;
a theorem (Theorem 1) stating that the two-sided lemons scheme deters trade, and costs
less than any other mechanism that deters trade; and a proof of the theorem containing
our methodological contributions (Lemma 1 and Lemma 2). Section 6 applies our main
result to a moral hazard problem with corruption, limited liability and imperfect moni-
toring. We show that it is weakly optimal to deter bribes (Lemma 4), and the two-sided
lemons scheme is the optimal way to deter bribes (Corollary 1). Finally, we compare the
two-sided lemons scheme with the cheapest one-sided mechanism (Proposition 1). Sec-
tion 7 concludes by discussing practical implementation of the two-sided lemons scheme,
and directions for future research.

2 Illustrative examples

There are three risk neutral players: the factory (he), the inspector (she), and the gov-
ernment (it). Suppose for the sake of illustration that the government has committed to
fine the factory $12k whenever the inspector reports a hard, evidence of non-compliance;
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and that this $12k fine is just enough to incentivise the factory to comply with the law.3

The bribery problem arises because the factory is always better off bribing the inspector
anything up to $12k to hide the evidence. If the factory anticipates that he can avoid the
fine by bribing the inspector, then he does not have the necessary incentives to comply.

Benchmark mechanism (transfers only) One solution is for the government to buy-
out the inspector by transferring the factory’s fine to her when she reports the evidence.
Doing so ensures that the inspector will reject any bribes less than $12k. It follows that
the factory pays at least $12k whenever the inspector obtains evidence, so he is better
off complying. Thus, the benchmark solution works, but it costs the government $12k.
Moreover, every transfer-only mechanism costs at least $12k.

Coin-toss mechanism (simple transfers and information) The government can deter
bribes at a cost of only $6k by using information design to engineer a simple (one sided)
adverse selection problem.

Firstly, the government randomly determines the player’s transfers by tossing a fair
coin. One side of the coin yields a $24k fine for the factory and a $12k prize for the
inspector. We call this the ‘peach outcome’ because the factory avoids a $24k fine if
he successfully bribes the inspector, so bribery is a ‘peach’. The other side of the coin
yields no fine for the factory and no reward for the inspector. We call this the ‘lemon
outcome’ because the factory does not avoid any fine by bribing the inspector, so bribery is
a ‘lemon’. These transfers are shown in Table 1. If the inspector reports a low reading then
the payoffs are the same as in the benchmark: the factory gets no fine and the inspector
gets no reward.

Peach Lemon
Probability 0.5 0.5

Factory -24 0
Inspector 12 0

Table 1: coin toss scheme payoffs (in $k) when the inspector reports a high reading.

Secondly, the government designs private information by showing the outcome of the
coin toss to the inspector, but not to the factory. This means that the inspector knows
whether or not she will be rewarded for reporting a high reading, whereas the factory
only knows that he will be fined $24k with probability one half.

The timing is as follows. First, the government announces the scheme. Then the
factory chooses whether or not to comply. Then government tosses the coin and shows
the outcome to the inspector, and the inspector inspects the factory (the order is not
important). If she obtains a low reading, then the government make no transfers, and
the game ends. Otherwise, the inspector and the factory attempt to negotiate a bribe.

3The full model is outlined in Section 6.
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If they are successful then the factory pays the inspector a bribe, the inspector reports
a low reading, the government makes no transfers, and the game ends. Otherwise, the
inspector reports the evidence, the government makes the transfers according to Table 1,
and the game ends.

We claim that the coin toss scheme (i) deters bribes; (ii) incentivises compliance; and
(iii) costs half as much as the benchmark. The second two points are straightforward: the
inspector’s average prize is 1

2 × $12 + 1
2 × $0 = $6k, which is half as much the benchmark;

and the factory’s average fine is 1
2 × 24 + 1

2 × $0 = $12k, so (absent bribes) the coin toss
scheme incentivises compliance. It only remains to show that the coin toss scheme deters
bribes.

First we show that the coin toss scheme deters ‘small’ bribes, i.e. bribes strictly below
$12k. The inspector will not accept small bribes in the peach outcome because she knows
that she stands to receive a $12k prize if she reports the high reading. She will accept
small bribes in the lemon outcome because she knows that she will not receive anything
for reporting the high reading. What about the factory? He doesn’t know whether or
not he will be fined, but he does know that the inspector only accepts small bribes in
the lemon outcome, and this is precisely the outcome where the factory does not benefit
from bribes. Therefore the factory is better off not paying small bribes. The logic is the
analogous that of Akerlof’s (uninformed) used car buyer:4 if the (informed) car seller is
willing to accept a low price, then it must be because they know they are selling a bad car
(or ‘lemon’). This inference decreases the buyer’s conditional willingness to pay, so that
they do not trade even at a low price. Similarly, accepting the bribe is a ‘lemon’ for the
inspector if the coin reveals the lemon side, so she is better off rejecting. Hence the coin
toss scheme deters all bribes strictly less than $12k.

The coin toss scheme also deters ‘big’ bribes, i.e. those strictly greater than $12k but
less than $24k. The inspector is better off accepting big bribes in both the peach and the
lemon outcomes. The factory is better off accepting big bribes in the peach state, but he is
worse off if he accepts them in the lemon state. Unfortunately for him, he can’t trust the
inspector not to accept the bribe in the lemon outcome for the same reason that a used
car buyer can’t trust a seller not to sell him a lemon — the lemon seller always wants to
sell, especially at high prices! So if the factory pays the bribe, then he has to accept that
the outcome is equally likely to be a peach or a lemon. But then his expected fine is only
$12k, so he is better off rejecting big bribes after all.

The knife edge cases where the factory pays a bribe exactly equal to $0 or $12k can be
ruled out by paying the inspector some arbitrarily small amount (e.g. $1) in addition to
her random prize. Finally, bribes greater than $24k are clearly never going to be attractive
to the factory because he never gets fined more than this anyway.

Thus, the coin toss scheme engineers an adverse selection problem that is severe
enough to deter all bribes. It strictly improves on the benchmark because the govern-
ment no longer has to completely outbid the factory. Although bribes create surplus for

4The key differences is that Akerlof’s buyer faces uncertainty about the value of trading, whereas the
factory faces uncertainty about the value of not trading.
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the factory and the inspector in the peach outcome, they are deterred because (i) the in-
spector’s prize is biggest in the peach outcome, so if she’s willing to accept a given bribe
in the peach outcome, then she is also willing to accept it in the lemon outcome; (ii) the
inspector knows whether the outcome is a peach or a lemon, so she can select to accept
small bribes only in the lemon outcome; (iii) the factory doesn’t know the outcome, so he
can’t pay bribes in the peach outcome without also risking that he pays them in the lemon
outcome. The numbers in the coin toss scheme are then chosen so that the smallest bribe
that the inspector is willing to accept in the peach outcome is too big for the factory to
risk wasting it in the lemon outcome. So no bribes take place in equilibrium. These same
general properties will hold for both players in the two-sided lemons scheme.

The two-sided lemons scheme (optimal transfers and information) Two-sided pri-
vate information creates scope for strategic contagion to amplify the effects of adverse
selection.

In the two-sided lemons scheme, the government gives the factory a baseline fine of
$16k when the inspector reports hard evidence of non-compliance5 Instead of tossing a
coin, the government runs a lottery. The factory and the inspector each receive a random
draw between 0 and 1, which constitutes their private information. Call them xF and xI
respectively. Every number is equally likely (uniform). If the inspector reports the high
reading then the player with the higher number receives a prize equal to 16 times the
difference between the two numbers, divided by the larger number, i.e.

16
|xF − xI |

max{xF ,xI }
.

Finally, the inspector gets paid a fixed reward of $8 to break indifferences (and simplify
algebra). There is no prize when the inspector reports no evidence, and the timing is same
as the coin toss scheme.

This scheme can be depicted in a unit square with the inspector’s number on the
horizontal axis, and the factory’s number on the vertical axis (Figure 1). Each outcome
of the lottery corresponds to a point in this square. The players’ private information is
embodied by the fact that the inspector knows only the horizontal coordinate of the true
outcome, whereas the factory knows only the vertical coordinate. If the outcome is in the
top left (bottom right) triangle, then the factory (the inspector) gets the prize. The size of
the prize is depicted by the shading: in red outcomes, the prize is paid to the factory, in
blue outcomes it is paid to the inspector. Darker shades (near the axes) indicate a higher
prize, and lighter shades (near the diagonal and the top right corner) indicate a lower
prize.

Every prize between 0 and $16k is equally likely, so average prize is exactly $8k. The
inspector wins with probability 1/2 so her average payoff when she reports evidence is
1
28 = 4k. Similarly, the factory’s average fine is 16 − 1

28 = 12k, so he is incentivised to

5Any number greater than 12 works — we choose 16 only because it ensures that the cost is an integer.
If chose 24 then the cost would be approximately $2.1k.
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Figure 1: Darker red includes a higher prize for the factory; dark blue indicates a higher
prize for the inspector.

comply. It only remains to show that the scheme deters bribes. We illustrate the main
intuition by showing that it is always rational for both players to reject a $8k bribe.6

First, suppose that inspector believes the factory will accept the $8k bribe, no matter
what number he receives. Given that the inspector does not know the factory’s number,
and that she only wins when her number xI is highest, her expected reward is∫ xI

0
16
xI − xF
xI

dxF = 8xI

thousand dollars, plus her $8 fixed wage. So her best response must would be to reject
the $8k bribe if

8000xI + 8 ≥ 8000
xI ≥ 0.999,

and to accept if her number is below the threshold 0.999.7

6There’s nothing special about 8 except that it’s halfway between 0 and 16, and therefore preserves
symmetry.

7What she does when her number is exactly 0.999 is of no consequence because this occurs with 0
probability.

7



It is rational for the factory to accept the bribe if his payoff from accepting the bribe
is bigger than the payoff he would get from rejecting the bribe. If the inspector rejects
the bribe, then the factory’s payoff is the same whether or not he accepts it. Therefore,
just as in the lemons problem, the factory calculates his expected payoffs conditional on
the inspector accepting the bribe. Conditional on the inspector accepting, the factory’s
payoff from accepting is -$8k (the cost of paying the bribe); his expected payoff from
rejecting depends on his number xF . If xF ≤ 0.999, then, given the inspector’s threshold,
his conditional expected payoff from rejecting is

1
0.999

(∫ xF

0
16
xF − xI
xF

− 16 dxI +
∫ 0.999

xF

−16 dxI

)
= 8

xF
0.999

− 16

thousand dollars. If xF ≥ 0.999, then it is

1
0.999

∫ 0.999

0
16
xF − xI
xF

− 16 dxI = −8
0.999
xF

thousand dollars. These expressions are both increasing in xF and, if xF = 0.999, they
both equal -8, which is exactly equal to the factory’s payoff from accepting. It follows
that the factory’s best response to the inspector’s threshold strategy is to accept bribes
when his number is below 0.999, and reject bribes when his number is above 0.999. So
his best response is to adopt the same threshold that the inspector uses.

However, the inspector’s threshold was chosen as a best response to the belief that
the factory accepts the bribe, no matter what number he receives. But if the inspector
anticipates that the factory adopts a threshold strategy, then her conditional expected
reward when she rejects will be the same as the factory’s, except that she also receives
the $8 fixed wage. So her best response to the factory’s threshold is to accept the bribe
whenever

8000
xI

0.999
+ 8 ≤ 8000

xI ≤ 0.9992

and to reject otherwise. Thus, she reduces her threshold to 0.9992.
Similar reasoning shows that the factory’s best response is to adopt the whatever

threshold he believes the inspector is adopting, and that, the inspector’s best response
is to adopt 0.999 times whatever threshold she believes inspector is adopting. After n
rounds of such reasoning, the players only accept the bribe only if their numbers are be-
low 0.999n. In the limit, 0.999n converges to 0, so it is never rational for the them to
accept the bribe. Or, to put it differently, neither player wants to agree to the bribe if
they believe they have the highest number. But in equilibrium they can’t both believe
they have the highest number, so they can never agree the bribe. An analogous argument
applies for any size of bribe, for any initial belief, and no matter how small the inspector’s
fixed wage is. We conclude the two-sided lemons scheme deters bribes.
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The previous argument shows that the two-sided lemons scheme not only creates an
adverse selection problem (like the coin toss scheme), but that this adverse selection prob-
lem is also contagious. Each player wants to accepts a bribe only when their expected
value of the prize is low, which leads them to reject when they receive a high number.
This creates a strategic externality, because each player’s expected value is increasing in
the other player’s number, so their expected value falls if the other player chooses to re-
ject when they receive high numbers. Therefore neither player ever accepts, even though
there are almost always strictly positive gains from trade.

Our main result, Theorem 1, and Corollary 1 show that the two-sided lemons scheme
not only deters bribes of the type described here, but it also deters a more general class of
bribe contracts mediated by a mafia. They also show that two-sided lemons schemes, of
the type described here, are the cheapest way to to provide the correct incentives for the firm.

3 Literature

We contribute to an extensive literature on corruption (Tirole, 1986; Laffont and Marti-
mort, 1997; Strausz, 1997; Baliga and Sjöström, 1998). The closest paper to ours is Ortner
and Chassang (2018). They are the first (to the best of our knowledge) to study the use
of endogenous asymmetric information to deter bribes. They show that a principal (the
government) can benefit from paying the monitor (inspector) a random wage (privately
observed by the monitor) according to a public distribution, known to the agent (the
factory). Doing so endows the monitor with private information about their outside op-
tion, and thereby creates an informational-friction in subsequent collusive negotiations
between the monitor and a would-be criminal agent. In their model, the agent chooses
between being criminal and bribing the monitor on the one hand, or being innocent on
the other. Paying the monitor a random wage creates a trade-off for the agent: he can
either offer a high bribe which guarantees a high probability of successfully corrupting
the monitor, or he can offer a low bribe which guarantees a low probability of successfully
corrupting the monitor. The principal saves money by paying random wages because low
wage monitors can mimic the high wage monitors and demand high bribes.

Our model differs from theirs in two important respects. Firstly, Ortner and Chas-
sang (2018) assume perfect monitoring so they can rule out bribes on the equilibrium
path (when no incriminating evidence arises) without needing to rule them out off the
equilibrium path (when the monitor receives incriminating evidence with certainty). By
contrast, we allow for monitoring mistakes so we have to consider the impact of bribes
both on and off the equilibrium path. If, like Ortner and Chassang, we pay rewards
according to a distribution that pays rewards that are smaller than the agent’s punish-
ment, then we inevitably get on-path bribery because the agent is always weakly better
off accepting bribes smaller than the punishment, and there will be a strictly positive
probability that the monitor is willing to accept such bribes. This difficulty motivates our
second main departure from their model, which is to endogenise the agent’s fines. Do-
ing so allows us to replicate the agent’s trade-off in their model, because we can use the
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changes in the agent’s fine to imitate his choice to commit crime or not. This gives our re-
sult a qualitatively different interpretation from theirs: our agent faces a lemons problem
because his fine depends on the monitor’s private information. Despite these differences,
our informed inspector scheme (Proposition 1), which is the closest to theirs conceptu-
ally, produces the same distribution of rewards and has the same cost.8 We showed in
Section 5 that the two-sided lemons scheme costs strictly less than the informed inspec-
tor scheme, and costs half as much in the limit as the size of the maximal punishment
increases.

Our results speak to the literature on the robustness of equilibria to contagion.9 Car-
roll (2016) obtains an upper bound on the amount of surplus lost due to contagion in a
game with two agents either accepting or rejecting a proposed deal, where both agents
have private information about the payoff outcomes of the deal. Surprisingly, Carroll
finds that contagion does not prevent the agents from realising joint surplus, so long as
they have common knowledge that their ex-post joint surplus from the deal is weakly
positive. He concludes by asking “What change[s] if we consider ... mechanism[s] that
determine not only whether a deal takes place but which deal is chosen? ... Is it possible
to describe the worst-case information structure?” (pp. 355–356). Our two-sided lemons
scheme entails common knowledge that the ex-post joint surplus from bribery is weakly
positive, and yet we find that contagion does play an important role in this scheme. We
conclude that contagion does become problematic when the players are trying to negoti-
ate the terms of a deal, because the players’ types adversely select which terms to accept.
The two-sided lemons scheme has a worst case information structure which leads to all
deals being rejected for a particular distribution of payoffs (payoffs are endogenous in
our setting, but exogenous in his). This worst case information structure has indepen-
dent and uniform signals that quantify the severity of the lemons problem faced by the
recipient.

Our problem fits into a larger class of general mechanism design problems in which
the designer chooses both transfers and information.10 A particularly relevant and re-
cent paper is Halac et al. (2021)’s Ranking Uncertainty in Organisations. They show how
‘ranking schemes’ can create strategic uncertainty and thereby induce a team of workers
to exert complementary effort on a project. Ranking schemes are superficially similar to
ours in two respects. Firstly, all the players receive a private message. Secondly, the dis-
tribution of payoffs is chosen so that work is a dominant strategy for the players with the
highest possible message realisation, and each player finds it optimal to work conditional
on the belief that all players with the same message or higher will work. Thus, like ours,
their scheme produces an inductive chain that causes working to be a higher order best re-
sponse for all other workers. However, the mechanism underlying their ranking scheme
is qualitatively different from ours. Endogenous private information benefits their de-

8Garrett et al. (2021) obtain the same distribution as a solution to a similar problem in which an agent
chooses their distribution of costs to maximise their information rent.

9See e.g. Kajii and Morris (1997); Morris and Ui (2005).
10See Bergemann and Morris (2019); Mathevet et al. (2020); Taneva (2019).
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signer because each worker’s incentives to work are strictly concave in their belief that
other workers will work. Therefore, a given incentive is created more cheaply by ran-
domising over beliefs. There is no lemons problem in their scheme because workers have
complete information about their own payoffs — other workers’ types only affect them
indirectly through the other workers’ decisions to exert effort. By contrast, asymmet-
ric information only benefits us because it inhibits our players from negotiating bribes
(which are not considered in Halac et al. (2021)). We engineer a lemons problem by de-
signing a scheme in which each player’s payoffs depend directly on the message received
by the other player.

Morris and Shin (2012)

4 Model

This section presents a general model of deterring trade. We have already introduced the
designer, and the traders — the buyer B and the seller S. To ensure that our proposed
scheme deters all possible bribes, we follow Laffont and Martimort (1997) and introduce
a fourth player, the mafia. The mafia helps the traders negotiate bribes by proposing and
enforcing side contracts. The seller values the good at 0 and the buyer values it at κ.

The designer moves first by proposing a scheme to the buyer and seller.

Definition 1. A scheme S consists of (X,Y ,Σ,p, t).

• X is a set of messages that the designer can privately send to the buyer.

• Y is a set of messages that the designer can privately send to the seller.

• Σ is a σ -algebra on X ×Y .

• p : Σ→ [0,1] is a probability measure overX×Y , so p(E) is the probability of sending
a pair of messages from a measurable set E ∈ Σ.

• tB, tS : X×Y →R+ specify the transfers from the designer to the buyer and the seller
respectively, if they don’t trade.

• If the traders do trade, then the designer pays them both zero.

We require a scheme to satisfy the following technical properties:

• The transfers tB and tS are Σ-measurable, i.e. pre-images of Borel sets are Σ-measurable.

• There exist marginal and conditional probability measures.

We implicitly assume that transfers are a deterministic function of the messages (x,y).
This is without loss of generality, because the players are risk neutral.

If the traders agree to the scheme, the mafia proposes a side contract. We assume that
the mafia can do partial implementation, i.e. the mafia succeeds in executing a bribe if
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one of the equilibria is successful. This has two advantages. First, it ensures that the
designer’s schemes are robust to a wider range of side contracts. Second, it means that
the revelation principle applies, which means that for any equilibrium that an arbitrary
side contract might implement, the mafia can adopt an equivalent direct side contract
that partially implements truth-telling. Hence there is no loss of generality in restricting
attention to direct side contracts.

Definition 2. A side contract C = (a,b) consists of

• a Σ-measurable allocation rule a : X × Y → [0,1], which specifies the probability of
trade for pair each pair of messages, (x,y) reported by the traders; and

• a pair of Σ-measurable bribe functions bB,bS : X×Y →R that specifies the (possibly
negative) bribe that each trade pays to the mafia for each pair of messages (x,y).

The buyer’s expected value from telling the mafia x′ when his true message is x is∫
Y

[a(x′, y) + (1− a(x′, y))tB(x,y)− bB(x′, y)] dpS |B(y|x). (1)

If the buyer declines to participate, he receives the expected transfer∫
Y
tB(x,y)dpS |B(y|x). (2)

It will be convenient to normalise the outside option to zero by studying the buyer’s net
value of reporting x′ when his true message is x, i.e.

VB(x,x′) :=
∫
Y

[a(x′, y)(1− tB(x,y))− bB(x′, y)] dpS |B(y|x). (3)

Similarly, the seller’s net value from telling the mafia y′ when his true message is y is

VS(y,y′) :=
∫
X

[−a(x,y′)tS(x,y)− bS(x,y′)] dpB|S(x|y). (4)

These integrals exist because the integrands are non-negative and the function a is Σ-
measurable. Their values of participating in the side contract are

WB(x) := max
x′
VB(x,x′) (5)

WS(y) := max
y′
VS(y,y′). (6)

Definition 3. A side contract is feasible if it satisfies the following constraints:

1. (Side incentives) Each trader prefers to truthfully report their private message to
the mafia, i.e. for all x ∈ X and for all y ∈ Y

WB(x) = VB(x,x) (SIB)
WS(y) = VS(y,y). (SIS)
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2. (Side participation) Each trader prefers to accept the side contract

WB(x) ≥ 0 ∀x ∈ X (SPB)
WS(y) ≥ 0 ∀y ∈ Y . (SPS)

3. (Profitable) The mafia makes a strictly positive profit in expectation, i.e.∫
[bS(x,y) + bB(x,y)] dp(x,y) > 0. (P)

The reason for focusing on strictly profitable side contracts is purely technical — it
ensures that an optimal scheme exists. Without it, we would have to add ε to our schemes
to destroy any unwanted equilibria.

The designer wants to deter these side contracts.

Definition 4. A scheme S blocks trade if there is no feasible side contract.

For any given weight λ ≥ 0, the weighted cost of a scheme S is given by the weighted
expected value of the transfers, c(S ;λ) :=

∫
X×Y [λtB(x,y) + tS(x,y)] dp(x,y). We use λ , 1

when we study moral hazard in Section 6.

Definition 5. The trade problem is to find the scheme that blocks trade at the lowest
weighted cost, i.e.

min
S
c(S ;λ) s.t. S blocks trade. (7)

5 Blocking trade

Definition 6. We propose the two-sided lemons scheme S ∗(λ) = (X∗,Y ∗,Σ∗,p∗, t∗) as follows.

• The designer draws the messages (x,y) uniformly from [0,1]2. Thus, X∗ = Y ∗ = [0,1],
Σ∗ is the Lebesgue σ -algebra on X∗ ×Y ∗, and p∗ is the Lebesgue measure.

• If the buyer and seller do not trade, then the designer rewards them

t∗B(x,y) =
κ
x

max
{
0,x − y1/λ

}
(8)

t∗S(x,y) =
κ
y

max
{
0, y − xλ

}
. (9)

Theorem 1. The two-sided lemons scheme S ∗(λ) solves the trade problem at a weighted cost of
c(S ∗;λ) = κ λ

λ+1 . The buyer and seller receive expected transfers of κ 1
(λ+1)2 and κ λ2

(λ+1)2 .
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Proof. Without loss of generality, assume that κ = 1. It is straight forward to calculate the
expected transfers of the two-sided lemons scheme S ∗, and to check that the weighted
cost is λ

λ+1 .11 The proof has two parts. First we show that S ∗ blocks trade (feasibility).
Then we show that every scheme that blocks trade costs at least λ

λ+1 (optimality).

Feasibility Pick any measurable side allocation rule a : X × Y → [0,1]. We adapt My-
erson (1981)’s logic to calculate the traders’ surplus under this allocation rule. We will
prove that the rule gives all the gains from trade to the traders, and leave no profits for
the mafia.

The buyer’s value function, WB(x), is convex and therefore absolutely continuous.12

The Fundamental Theorem of Calculus (Royden and Fitzpatrick, 1988, Theorem 10) im-
plies that the value of type x can be calculated by summing the marginal values,

WB(x) =WB(1)−
∫ 1

x

d
ds
WB(s) ds, (10)

using type x = 1 as our reference point. These marginal values can be calculated with the
envelope theorem,13

d
ds
WB(s) =

∂
∂s
VB(s, s′)

∣∣∣∣∣
s′=s

= −
∫ sλ

0
a(s,y)

y1/λ

s2
dy = −1

s

∫ sλ

0
a(s,y)[1− t∗B(s,y)]dy. (11)

Substituting (11) and the side participation constraint WB(1) ≥ 0 into (10), we find that
the buyer’s expected surplus is at least∫ 1

0
WB(x)dx ≥

∫ 1

0

∫ 1

x

1
s

∫ sλ

0
a(s,y)[1− t∗B(s,y)]dy dsdx. (12)

We use the following lemma to simplify the triple integral.

Lemma 1. If f : [0,1]→R is Lebesgue integrable, then
∫ 1

0

∫ 1
x
f (s) ds dx =

∫ 1
0
xf (x) dx.

Proof. Let g(x) =
∫ 1
x
f (s) ds. Notice that g(1) = 0 and that, by Leibniz’ rule, g ′(x) = −f (x).

Since g is absolutely continuous (it is an indefinite integral) and 1 is Lebesgue integrable,
integration by parts implies∫ 1

0
g(x)× 1 dx = g(1)× 1− g(0)× 0−

∫ 1

0
g ′(x)x dx = −

∫ 1

0
−f (x)x dx =

∫ 1

0
xf (x) dx.

11Specifically
∫ 1

0 t
∗
B(x,y)dy =

∫ xλ
0

x−y1/λ

x dy = xλ − 1
x

λ
λ+1x

λ+1 = 1
λ+1x

λ so that
∫

[0,1]2 t
∗
B(x,y)d(x,y) =∫ 1

0
1
λ+1x

λ dy = 1
(λ+1)2 . Similarly,

∫ 1
0 t
∗
S (x,y)dx = λ

λ+1y
1/λ and

∫
[0,1]2 t

∗
S (x,y)d(x,y) = λ2

(λ+1)2 .
12Notice that VB(x,x′) is convex in x. So WB is an upper envelope of convex functions so it is also convex.

Thus WB is absolutely continuous by (Royden and Fitzpatrick, 1988, Corollary 17).
13Specifically, VB(x,x′) =

∫ 1
0 a(x

′ , y)dy +
∫ xλ

0 a(x′ , y) y
1/λ

x dy −
∫ 1

0 bB(x′ , y)dy so the envelope theorem implies
∂
∂xVB(x,x′) = a(x′ , y) y

1/λ

x

∣∣∣∣
y=xλ

dx1/λ

dx −
∫ xλ

0 a(x′ , y) y
1/λ

x2 dy = −
∫ xλ

0 a(x′ , y) y
1/λ

x2 dy.
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This lemma has the following intuition. Suppose that the agent’s type x is drawn
uniformly from [0,1]. If an agent’s first-order condition is that the marginal transfer
t′(x) = f (x), then each side of the equation gives a way to calculate the expected transfers.
On the left side, the inner integral calculates t(x), and the outer integral calculates the
expectation. On the right side, f (x) is added to all transfers from t(0) to t(x), so xf (x)
represents the cumulative increment. The integral sums these increments.

Applying Lemma 1, the bound on the buyer’s expected surplus (12) becomes∫ 1

0
WB(x)dx ≥

∫
x>y1/λ

a(x,y)(1− t∗B(x,y))d(x,y). (13)

The calculations for the seller’s expected surplus are similar, and give∫ 1

0
WS(y)dy ≥

∫
x<y1/λ

a(x,y)(1− t∗S(x,y))d(x,y). (14)

Summing the two inequalities, we deduce that the traders’ joint surplus is at least as big
as the gains from trade, i.e.∫ 1

0
WB(x)dx+

∫ 1

0
WS(y)dy ≥

∫
a(x,y)(1− t∗B(x,y)− t∗S(x,y))d(x,y). (15)

Since there is no surplus left for the mafia, the two-sided lemons scheme blocks trade.

Optimality We now prove that the two-sided lemons scheme S ∗(λ) = (X∗,Y ∗,Σ∗,p∗, t∗)
has the lowest possible weighted cost, i.e. every scheme S that blocks trade costs at least
λ
λ+1 . We proceed in three steps. We follow the literature by referring to x and y as the
traders’ types. First we define a special type of side contract, called a simple bribe. Next,
we define what it means for a scheme to ‘infect’ a player-type in the resulting game (in
the spirit of Akerlof/Rubinstein-style unravelling), and show that any scheme that blocks
all simple bribes necessarily infects all the types of at least one player. Finally, we show
that any scheme that infects all the types of either player necessarily costs at least c(S ∗,λ).
Hence any scheme that blocks all side contracts costs at least c(S ∗,λ).

Let S = (X,Y ,Σ,p, t) be a any scheme.

Definition 7. A simple bribe is a side contract of the form

a(x,y) = aB(x)aS(y) (16)
bB(x,y) = a(x,y)b (17)
bS(x,y) = −a(x,y)b (18)

where aB : X→ [0,1] and aS : Y → [0,1] are measurable acceptance policies for the buyer
and the seller respectively, and b > 0 is a constant price paid by the buyer to the seller.
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The traders do not need the mafia’s help to execute a simple bribe. The buyer would
offer a bribe of b directly to the seller if aB(x) = 1, and the seller would accept this if
aS(y) = 1.

If a buyer type x best responds to a seller strategy aS by rejecting the bribe, then we
say that x is ‘infected by’ aS .

Definition 8. A finite outbreak of length N is a pair of finite sequences of infected types
(Xn,Yn)Nn=0 where Xn ⊆ X and Yn ⊆ Y that satisfies the following properties:

1. At the start, no types are infected, i.e. X0 = Y0 = ∅.

2. Once infected, types stay infected, i.e. Xn ⊆ Xn+1 and Yn ⊆ Yn+1 for all n < N .

3. In round n, at most one player has a non-empty set of newly infected types, i.e. either
X̄n := Xn\Xn−1 , ∅ or Ȳn := Xn\Xn−1 , ∅, but not both.

4. Newly infected buyer types get infected by a ‘adverse seller strategy’ and newly
infected seller types get infected by a ‘adverse buyer strategy’, i.e. if X̄n , ∅ then
there exists a strategy aS such that

(a) uninfected seller types accept, i.e. aS(y) = 1 for all y < Yn;

(b) each newly infected type is better off rejecting the deal, i.e.∫
Y

[tB(x,y)− (1− b)]aS(y) dp(y|x) > 0 ∀x ∈ X̄n. (19)

Similarly, if Ȳn , ∅ then there exists a strategy aB such that aB(x) = 1 for all x < Xn,
and ∫

X
[tS(x,y)− b]aB(x) dp(x|y) > 0 ∀y ∈ Ȳn. (20)

An infinite outbreak (Xn,Yn)n∈N is defined similarly. The size of an outbreak is equal
to the measure of infected buyer types, pB(∪nXn) (the argument would be completely
analogous if we defined it to be the measure of infected seller types).

Lemma 2. There exists an infinite outbreak (X ′′n ,Y
′′
n )n∈N that infects all of the buyer’s types,

i.e. pB(Xn)→ 1.

Proof of Lemma 2. We would like to prove that every buyer type gets infected. If there
were a finite number of types, then we could use Carroll (2016, Propositions 3.1 and
3.2)’s logic. He shows that any outbreak that falls short of infecting all types can be
extended to infect more types. By induction, we can show that, one by one, all types get
infected. However, this argument does not directly generalise to infinite types. Infecting
an infinite number of types one by one would lead to a transfinite induction problem.

Our approach has two differences. Instead of infecting types one-by-one, we infect
a positive measure of types at each step. And we show that if a type can be infected
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after a countable number of rounds of infection, then finite rounds would also suffice.
To these ends, Claim 1 proves that there exists an infinite outbreak that is the same size
as the supremum of the size of all the finite outbreaks. Claim 2 proves that any infinite
outbreak that fails to infect all of the buyer types is smaller than some finite outbreak.
It follows that the supremum of the size of all the finite outbreaks is 1 — otherwise we
could first apply Claim 1 to obtain an infinite outbreak that attains the supremum, and
then apply Claim 2 to obtain a larger finite outbreak that exceeds the supremum, giving a
contradiction. Claim 1 then implies that there exists an infinite outbreak of size 1, which
is precisely what it means to infect almost all buyer types. All that remains is to formally
state and prove Claim 1 and Claim 2.

Claim 1. Let O denote the set of finite outbreaks. Let

r∗ = sup
(Xn,Yn)Nn=0∈O

pB(XN )

denote the supremum of the size of all the finite outbreaks. There exists an infinite outbreak of
size r∗.

Proof. Since r∗ is the supremum, there exists a sequence of finite outbreaks (Xm,Ym)m∈N,
each of length Nm, such that rm = pB(XmNm) converges to r∗. Let X ′n be the concatenation
of these sequences, i.e. X ′ = X0 ‖X1 ‖ · · · . Let X ′′n be the sequence X ′′0 = X ′0 and X ′′n+1 =
X ′n+1∪X ′′n . Construct the sequences Y ′n and Y ′′n in the same way. The sequence (X ′′n ,Y

′′
n )n∈N

is an infinite outbreak because:

1. X ′′n = X ′0 = X0
0 = ∅ and Y ′′n = Y ′0 = Y 0

0 = ∅.

2. X ′′n+1 = X ′n+1 ∪X ′′n ⊇ X ′′n . Similarly, Y ′′n+1 ⊇ Y ′′n .

3. We will prove that if X ′′n+1 , X
′′
n then Y ′′n+1 = Y ′′n . The reverse case when Y ′′n+1 , Y

′′
n

is similar. Suppose X ′′n+1 , X
′′
n . If these straddle a boundary between two finite

outbreaks, Xm ‖Xm+1, then Y ′n+1 = ∅ so Y ′′n+1 = Y ′′n ∪ ∅ = Y ′′n , as required. Otherwise,
X ′′n+1 , X

′′
n lie within a single outbreak Xm. In this case, X ′n+1 , X

′
n and hence Y ′n+1 =

Y ′n. We conclude that Y ′′n+1 = Y ′′n ∪Y ′n+1 = Y ′′n ∪Y ′n = Y ′′n as required.

4. Suppose a non-empty set of buyer types X̄ ′′n are newly infected in step n. Let aS be
the adverse seller strategy from the underlying finite outbreak Xmk .

(a) We must check that the adverse seller strategy accepts on the uninfected types
Y \Y ′′n . This follows from the fact that there are fewer uninfected types, i.e. Ymk =
Y ′n ⊆ Y ′′n so Y \Y ′′n ⊆ Y \Ymk .

(b) We must check that the newly infected buyer types prefer to reject the deal. This
follows from the fact that there are fewer newly infected types, i.e. X̄ ′′n ⊆ X̄mk .

The logic for newly infected seller types is analogous.
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Finally, every infection set at the end of each outbreak, XmNm , is contained as a subset of
some set X ′′n , it follows that pB(X ′′n )→ r∗.

Claim 2. Let (Xn,Yn)n∈N be an infinite outbreak of size r := limn→∞pB(Xn) that falls short of
infecting all of the buyer types, so that r < 1. There exists a finite outbreak (X ′n,Y

′
n)n≤N with

size pB(X ′N ) > r.

Proof. Let (X∗,Y ∗) = (∪n∈NXn,∪n∈NYn) denote the set of types infected by the outbreak, so
that pB(X∗) = r. Consider the amended game in which the uninfected types (X\X∗,Y \Y ∗)
are constrained to accept trade, but the remaining types may choose to either accept or
reject the trade. 14 The assumptions above ensure that of Balder’s equilibrium existence
theorem (Balder, 1988, Theorem 3.1) apply,15 so an equilibrium (a∗B, a

∗
S) exists in the con-

strained game. There are no profitable deviations within this restricted strategy space.
But trade between uninfected types occurs, so (a∗B, a

∗
S) is not an equilibrium in the uncon-

strained game. Therefore, the buyer (without loss of generality) must have a profitable
deviation by a strictly positive measure of uninfected types X̄ ⊆ X \X∗. These types get
infected in the unconstrained game, so they would rather reject trade, i.e. for all x ∈ X̄,∫

Y
[TB(x)− (1− b)]a∗S(y)dp(y|x) > 0. (21)

Summing up, we deduce ∫
X̄×Y

[TB(x)− (1− b)]a∗S(y)dp(x,y) > 0. (22)

Since uninfected seller types y ∈ Y \Y ∗ accept, we can write∫
X̄×Y ∗

a∗S(y)[TB(x)− (1− b)]dp(x,y) +
∫
X̄×(Y \Y ∗)

[TB(x)− (1− b)]dp(x,y) > 0. (23)

Now, for each period N ∈N in which buyer types get infected (not seller types), con-
sider the finite sequence (X ′n,Y

′
n)n≤N which equals (Xn,Yn) up until period N − 1, and

equals (XN−1 ∪ X̄,YN ) in period N . In period N , the seller plays a strategy aNS which is
equal to 1 (trade) on the set Y \YN ⊇ Y \Y ∗ (so it satisfies the constrainr in round N ), and
which is equal to a∗S on the set YN . The payoff for buyer types in X̄ under aNS differs from
their payoff under a∗S by ∫

Y ∗\YN
|1− a∗S(y)|[TB(x)− (1− b)] dp(y|x), (24)

14We owe this proof technique to Carroll (2016)’s study of the finite case.
15Balder’s equilibrium existence theorem requires that the player’s utility functions are (C1’) measurable

with respect to types and actions; (C1”) conutinuous with respect to actions, for each type; (C1”) bounded;
and that the prior distribution over types is (C2) measurable with respect to it’s marginals.
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which is at most P[Y ∗ \ YN ] × [TB(x) − (1 − b)]
N→∞−−−−−→ 0. Types in X̄ get a strictly prefer to

reject trade under a∗S , so there must exists some N large enough that they strictly prefer
to reject trade under aNS as well. This means that types in X̄ can get infected in round N ,
so (X ′n,Y

′
n)n≤N is a well defined finite outbreak.

Moreover, XN−1 and X̄ are disjoint, so the size of (X ′n,Y
′
n)n≤N is

pB(XN−1 ∪ X̄) = pB(XN−1) + pB(X̄)→ r + p(X̄),

which is strictly greater than r. Thus, there exists a large enough N that defines a finite
outbreak (X ′n,Y

′
n)n≤N with size greater than r.

Lemma 3. If S deters a bribe of b, then its weighted cost is at least min{λ(1− b),b}. Hence, if
S deters a bribe of b∗ = λ

λ+1 , its weighted cost is at least λ
λ+1 .

Proof. By Lemma 2, there is an outbreak (Xn,Yn)n∈N that infects almost all buyer types.
At each round n of the outbreak, either some buyer or seller types are infected. Suppose
the buyer types X̄n+1 are infected in round n. When faced with an adverse seller strategy
anS , they reject the bribe in favour of the transfers, i.e.∫

X̄n+1×Y
anS(y)[tB(x,y)− (1− b)]dp(x,y) > 0. (25)

Suppose that all of the infected seller types reject the bribe, leaving only the uninfected
seller types Y \Yn, who must accept. We deduce that the newly infected buyers also reject
these bribes, and with more vigor, i.e.∫

X̄n+1×Y
tB dp > (1− b)

∫
X̄n+1×Y

anS(y) dp(x,y) ≥ (1− b)p(X̄n+1 × (Y \Yn)). (26)

Similarly, in a round n where seller types Ȳn+1 are infected, they reject bribes when only
the uninfected buyers X\Xn accept, i.e.∫

X×Ȳn+1

tS dp ≥ bp((X\Xn)× Ȳn+1). (27)

These inequalities involve three ways of splitting the type space up, depicted in Figure 2:

(a) Partitioning by buyer infections in each round n, i.e. {X̄n ×Y }.

(b) Splitting by seller infections in each round n, i.e. {X × Ȳn}. Note that a positive
measure are never infected, so these cells do not cover the type space.

(c) Partitioning by infections matched with uninfected types in each round n, i.e. {X̄n+1×
(Y \Yn)}n∈N ∪ {(X\Xn)× Ȳn+1}n∈N.
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Figure 2: Splitting up the type space. The shaded region is not covered.

The left sides of (26) and (27) sum up the transfers over all new infections. The right
sides sum up the foregone bribes in the matched infections. Thus, taking the λ-weighted
sum of the inequalities and summing up over the cells gives∫

X×Y
(λtB + tS) dp ≥

∞∑
n=1

∫
X̄n+1×Y

λtB dp+
∞∑
n=1

∫
X×Ȳn+1

tS dp (28)

≥ λ(1− b)
∞∑
n=1

p(X̄n+1 × (Y \Yn)) + b
∞∑
n=1

p((X\Xn)× Ȳn+1) (29)

≥min{λ(1− b),b}. (30)

6 Deterring Bribes

A factory chooses whether to pollute, p, or comply c. Other things equal, polluting yields
a payoff of 1, whereas complying yields a payoff of 0. An inspector inspects the factory. If
the factory chooses to pollute then the inspector obtains evidence of pollution with prob-
ability πp; otherwise, she obtains no evidence. If the factory chooses to comply then the
inspector obtains evidence of pollution with probability πc < πp. The fact that πp can be
strictly less than 1 implies that the monitoring technology is imperfect — the inspector
may fail to obtain evidence of pollution even though the factory has been polluting. Sim-
ilarly, if πc is strictly greater than 0 then the inspector may find evidence that the factory
has been polluting, even though he has been compliant. The requirement that evidence
is more likely to arise when the factory pollutes than when he complies ensures that ev-
idence is indicative of pollution. If the inspector obtains evidence of pollution then she
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can either report it to the government, or she can keep silent. We assume that evidence
cannot be fabricated, so if the inspector does not obtain evidence then she has no choice
but to keep silent.

The government wants to incentivise the factory to comply, which it does so by de-
signing a scheme S = ((X,Σ,p), (f , s, r)), where (X,Σ,p) is a public distribution p over a
message space X = (XI ,XF) with σ -algebra Σ (the factory observes the message xF and
the inspector observes the message xI ); and f , s and r are message-contingent transfers.
Specifically, f : X → R is a fine paid by the factory to the government and r : X → R is
a reward paid by the government to the inspector in the event that the inspector reports
evidence; and s : X → R is a subsidy paid by the government to the factory in the event
that the inspector does not report evidence.

There is also a mafia who can offer feasible side contracts of the form described in
Definition 2. Here, the factory takes on the role of the buyer and the inspector takes
on the role of the seller. The function a is the probability that the inspector conceals
the evidence and the transfers are the bribes (which can be negative). If the inspector
conceals the evidence then the factory receives the subsidy s(x) instead of paying the fine
f (x), hence his “net value of trade” is equal to s(x)− (−f (x)) = s(x) + f (x) (for comparison,
the buyer’s net value of trade in Section 5 is κ − tB(x)). The mafia doesn’t care about
compliance but rather just wants to maximise its profit from facilitating bribes. 16

The timing is as follows: the government and the mafia commit to their chosen scheme
and side contract respectively; the factory chooses its action; the government sends pri-
vate messages; the factory and the inspector send reports to the mafia; nature selects
whether or not the inspector receives evidence; if the inspector does receive evidence,
then the mafia’s side contract specifies what bribes are paid, and whether or not the in-
spector conceals the evidence; finally, the transfers specified by the government’s scheme
are made.

To be effective, the government’s scheme must respect three types of constraint. Firstly,
it must ensure that the factory s better off complying than polluting. If complies then he
gets πcEx[a(x)s(x) + (1 − a(x))f (x)] + (1 −πc)Ex[s(x)], whereas polluting yields a payoff of
1 +πpEx[a(x)s(x) + (1 − a(x))f (x)] + (1 −πp)Ex[s(x)]. Thus to be compliance incentive com-
patible(CI), the government’s scheme must satisfy

πcEx[a(x)s(x)− (1− a(x))f (x)− tF(x)] + (1−πc)Ex[s(x)]
≥ 1 +πpEx[a(x)s(x)− (1− a(x))f (x)− tF(x)] + (1−πp)Ex[s(x)]

(31)

Ex[(1− a(x))(f (x) + s(x)) + tF(x)] ≥Π :=
1

πp −πc
(32)

for all at least one feasible side contract C = (a, (bF ,bI )) (Lemma 4 will show that it does
not matter which feasible side contract.). We refer to the left side as the factory’s incentive
to comply because this is by how much his expected payoff increases when he complies.

16The mafia’s precise objective is not especially important since the government’s goal is to ensure that
its feasible set contains only null contracts.
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The quantity Π is the factory’s benefit from polluting divided by the marginal risk of
being caught, which we refer to as his risk-adjusted benefit of polluting. Thus the CIC
constraint says that the size of the factory’s incentive to comply must exceed his risk-
adjusted benefit of polluting.

Secondly, if the factory’s expected payoff is too low then it will go out of business.
Thus, if the government wants the factory to stay in business (we assume that it does)
then it must ensure the factory’s expected payoff is weakly positive when if it chooses to
comply. This yields the factory’s compliance participation constraint:

πcEx[a(x)s(x)− (1− a(x))f (x)− tF(x)] + (1−πc)Ex[s(x)] ≥ 0 (33)

for some side contract C.
Thirdly, it must respect the players’ limited liability constraints. The inspector cannot

receive negative rewards, so the government must choose r(x) ≥ 0 for all x ∈ X. If we
relax this then the government benefit from fining the inspector whenever she fails to
produce evidence. If we relax it enough then the government can incentivise the factory
for free, even without using information design, because she can use fear of punishment
to incentivise the monitor to report evidence, instead of relying on rewards. The factory
is not protected by the same constraint, so the government can fine him, but it only has
limited wealth, so the government cannot fine him more than some amount f̄ . Similarly,
the government only has limited wealth so it cannot reward the factory more than s̄. So
it must choose f (x) ≤ f̄ and s(x) ≤ s̄ for all x ∈ X.

The cost of a scheme S is

c(S) := sup
C is feasible

Ex[πc(1− a(x))(r(x)− f (x)) + (1−πc(1− a(x)))s(x)]. (34)

Analogous to Definition 4, we say that a scheme S deters bribes if and only if there are
no feasible side contracts.

Lemma 4. For every feasible scheme, there exists an bribery proof feasible scheme with the
same cost.

Proof. The idea is similar to Laffont and Martimort (1997) (CHECK). Let S be a feasible
scheme. If S is not bribery proof then there must exist an interim efficient, non-null side
contract, C.17 The government can create a new scheme S ′ that replicates the ex post
payoffs of the side contract C under the original scheme S . The fact that S and S ′ are ex-
post payoff equivalent implies that S ′ is feasible and costs the same as S . It only remains
to show that S ′ is bribery proof.

Suppose it is not and that there exists a non-null, interim efficient side contract C′. Let
C′′ denote the side contract that delivers the same ex post payoff outcome under S that C′
does under S ′, i.e. ... Then C′′ must interim dominate C because (i) the scheme, contract

17A side contract is interim efficient if it is feasible and there is no other feasible side contract that delivers
a weakly higher ex post payoff to all types of both players, and a strictly higher payoff to at least one type
of one player.
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pair (S ,C′′) is ex post payoff equivalent to (S ′,C′), which interim dominates (S ′,C0), which
is ex post payoff equivalent to (S ,C); and (ii) the fact that C′ feasible implies C′′ is feasible.
But this contradicts the fact that (S ,C) was assumed to be interim efficient, so it follows
that S ′ must deter bribes.

The fact that the government can restrict attention to bribery proof schemes simplifies
the problem dramatically, because it means that bribes need not feature in the player’s
payoffs. The cost of this simplification is that the scheme must satisfy a bribery proofness
constraint. Formally, the moral hazard problem is

min
S=((X,Σ,p),(f ,s,r))

E[πc(r(x)− f (x)) + (1−πc)s(x)]

s.t. Ex[f (x) + s(x)] ≥Π (CI)
Ex[(1−πc)s(x)−πcf (x)] ≥ 0 (CP)
r(x) ≥ 0 and f (x) + s(x) ≤ κ for all x ∈ X (LL)
S is bribery proof. (BP)

The solution to the moral hazard problem is given by following corollary of Theo-
rem 1.

Corollary 1 (Moral hazard). If the bound on the factory’s payoffs is lower than his risk-
adjusted benefit of polluting, i.e. κ <Π, then the moral hazard problem has no solution. Oth-
erwise, the following scheme is optimal: the designer draws messages xF and xI uniformly and
independently from the unit interval (i.e. X∗F = X∗I = [0,1] and p∗ is uniform), and pays trans-
fers

f ∗(x) = (1−πc)
κ
xF

max{0,xF − xλI } (35)

s∗(x) = πc
κ
xF

max{0,xF − xλI } (36)

r∗(x) =
κ
xI

max{0,xI − x1/λ
F }, (37)

where λ =
√

κ
κ−Π − 1, This scheme costs c∗ := πc

(√
κ −
√
κ −Π

)2
.

Proof. We show that the moral hazard problem is equivalent to the trade problem with
welfare weight equal to

√
κ

κ−Π − 1.
First, we note that that the (CP) constraint must hold with equality. Otherwise, if it

were slack by some amount ε, then the government could increase the fine and reduce
subsidy each by ε/2. Doing so would clearly we cheaper. It would also be feasible because
the left side of the (CP) constraint would be reduced by ε/2, so it would still be greater
than 0; and the sum f (x) + s(x) would be unchanged so the (CI), (LL) and (BP) constraints
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would continue to hold. Substituting the (CP) constraint into the objective, and dividing
the objective by the constant πc simplified the problem to

min
S=((X,Σ,p),(f ,s,r))

E[r(x)]

s.t. Ex[f (x) + s(x)] ≥Π (CI)
Ex[(1−πc)s(x)−πcf (x)] = 0 (CP)
r(x) ≥ 0 and f (x) + s(x) ≤ κ for all x ∈ X (LL)
S is bribery proof. (BP)

Next, we restate the problem in terms of the variables tB(x) = κ − (f (x) + s(x)) and
tS(x) = r(x). The variable f and s occur everywhere in the problem as the sum f (x) + s(x)
except in the (CP) constraint. But if we can solve for tB(x) then we can satisfy (CP) by
setting s(x) = πc(κ − tB(x)) and f (x) = (1−πc)(κ − tB(x)). Hence, the problem reduces to

min
S=((X,Σ,p),(tB,tS ))

E[tS(x)]

s.t. Ex[tB(x)] ≤ κ −Π (CI)
tS(x) ≥ 0 and tB(x) ≥ 0 for all x ∈ X (LL)
S is bribery proof. (BP)

The only difference between this problem and the trade problem (Equation 7) is that
the buyer’s expected transfer Ex[tB(x)] enters the moral hazard problem through the a
constraints, with lower bound κ −Π, whereas it enters the trade problem through the
objective with welfare weight λ. Setting the welfare weight equal to λ∗ :=

√
κ

κ−Π −1 yields
exactly

E[tB(x)] = κ
1

(λ∗ + 1)2 = κ −Π. (38)

A higher welfare weight results in a higher expected value of tS , and therefore has a
higher cost; a lower welfare weight results in a higher expected value of tB, violating
(CI). Therefore the solution to the this problem is the same as the solution to the trade
problem with the specific welfare weight λ∗; The value of this problem is equal to the
expected payoff of the seller in the trade problem, which is

κ
(λ∗)2

(λ∗ + 1)2 = κ
1

(λ∗ + 1)2 (

√
κ

κ −Π
− 1)2 (39)

= (κ −Π)
(

κ
κ −Π

− 2

√
κ

κ −Π
+ 1

)
(40)

= κ − 2
√
κ(κ −Π) +κ −Π (41)

=
(√
κ −
√
κ −Π

)2
. (42)
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Finally, the cost of the scheme is equal to probability finding incriminating evidence in

equilibrium, times the inspectors expected reward, which is πc
(√
κ −
√
κ −Π

)2
.

We conclude this section by comparing the two-sided lemons mechanism with the op-
timal on-sided mechanism. The reasons for presenting this particular scheme are three-
fold. Firstly, it demonstrates that the government can attain the first best outcome if it
can use infinitely large fines. We consider the case of infinitely large fines to be unreal-
istic, so this fact motivates us to consider cases where fines are bounded. Secondly, it is
the optimal one-sided scheme (when the bound on fines is not too small18), so the fact
that our two-sided lemons scheme costs strictly less than it motivates our interest in two-
sided lemons schemes. Thirdly, it provides the best basis for comparing our main result
with previous literature (Ortner and Chassang, 2018).

Proposition 1 (Optimal one-sided scheme (Informed Inspector)). For any constant k ≥Π,
the scheme (pII, (f II, sII, rII)) defined by

pII uniform on [0,1]

sII(xI ) =

0 if xI ≤ k−Π
k

(1−πc)k otherwise

sII(xI ) =

0 if xI ≤ k−Π
k

πck otherwise

rII(xI ) =

0 if xI ≤ k−Π
k

k − k−ΠxI otherwise,

1. deters bribes and satisfies the factory’s voluntary participation and incentive compatibil-
ity constraints;

2. costs cII := πc
[
Π+ (k −Π) ln

(
1− Π

k

)] k→∞−−−−−→ 0;

3. costs less than any other one-sided, informed inspector scheme that satisfies the factory’s
voluntary participation and incentive compatibility constraints.

Proof. We prove here that the informed inspector scheme deters bribes. The rest of the
proof is given in subsection 8.1.

Consider a bribe b. The inspector will agree to the bribe if and only if she receives a
message for which her reward r(xI ) is less than the bribe b. We have r(xI ) = k − k−ΠxI so the

inspector agrees to the bribe if and only if b ≥ k − k−ΠxI , or equivalently, xI ≤ k−Π
k−b . This is

18If the bound on fines is small enough then the one-sided informed inspector scheme is undercut by a
one-sided informed firm scheme.
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an example of a cutoff strategy with cutoff equal to k−Π
k−b . the factory’s expected incentive,

conditional on the inspector’s cutoff strategy, is equal to

E

[
f II(xI ) + sII(xI )

∣∣∣∣ b ≥ k − k −ΠxI
]

=P
[
xI ≤

k −Π
k

∣∣∣∣ xI ≤ k −Πk − b

]
0 +P

[
xI ≥

k −Π
k

∣∣∣∣ xI ≤ k −Πk − b

]
k

=min

1,
1
k−b −

1
k

1
k−b

k
=min{k,b},

so he is indifferent about accepting bribes less than k, and strictly prefers to reject bribes
greater than k. If b = 0, then the inspector strictly prefers to take her reward if her
message is xI > 1 − Π

k , otherwise she is indifferent. Therefore, the factory’s conditional
expected incentive is equal to 0, so he is indifferent as well. In all cases, the government
can deter the players from exchanging the zero bribe at an arbitrarily small cost (e.g. by
adding ε to the inspector’s reward).

The key feature of this scheme is that the distribution of rewards is chosen so that the
factory’s probability of facing a peach conditional on a given bribe increases in proportion
to the size of the bribe, so as to keep him indifferent about accepting the bribe. In other
words, ‘peach inspectors’ enter the market at the highest rate possible without giving
the factory a strict preference to enter the market. In the limit, the factory’s incentive,
k, becomes arbitrarily large with vanishing probability, which corresponds to the use of
extreme incentives in Becker (1968). By contrast, the inspector’s reward never exceeds Π.
Since the government only has to pay the inspector with the same vanishing probability
that she punishes the factory, the inspector’s expected reward can be made arbitrarily
small. This in turn means that the cost of the scheme approaches the first best cost, so
no scheme can do better. We show in subsection 8.2 that, when the k is restricted to be
small enough, there is an informed firm scheme that costs less than the optimal informed
inspector scheme.

The two-sided lemons scheme is a substantial improvement on the optimal one-sided
scheme. In the one-sided scheme, the inspector’s willingness to accept bribes was de-
creasing in her own message, so she only wanted to agree to bribes when her message was
below a certain cutoff. The factory’s willingness to accept bribes was increasing in the
inspector’s message, so the inspector’s choice of cutoff strategy made him unwilling to
accept any bribes. In the two-sided lemons scheme, the inspector is both informed (about
her own message) and uninformed (about the factory’s message) so she inherits both of
these features. Her willingness to accept bribes is decreasing in her own message, so she
continues to adopt a cutoff strategy. But her willingness to accept bribes is increasing in
the factory’s message, so her optimal choice of cutoff is decreasing in her belief about the
factory’s message. Her belief about the factory’s message depends on his strategy. The
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distribution of transfers ensures that his best response is also a cutoff strategy, and his
optimal cutoff is decreasing in his belief about the inspector’s message. The distribution
of transfers is chosen so that each player wants to choose a cutoff that is slightly below
the cutoff that the other player chooses. Therefore there can be no equilibrium in which
they both use a positive cutoff, which means that they do not agree to bribes in any equi-
librium. Thus, unlike the informed inspector scheme, the two-sided lemons scheme uses
contagion in higher order beliefs to amplify the adverse selection problem.

Another closely related paper to ours is von Negenborn and Pollrich (2020). They also
find that engineering a lemons problem is an optimal solution to a mechanism design
problem. Our main contribution relative to theirs is that we impose bounds on all trans-
fers. Whereas their proposed mechanisms attain the first best by using large rewards
and/or punishments. Therefore, they do not need to engineer an optimal lemons prob-
lem – any lemons problem would suffice. E.g., consider a biased coin with P[L] = q :=

1−
√

1− Π
k .

• Setting f (P ) + s(P ) = qk deters distraction and bribes.

• Cost equals
√
k(
√
k −
√
k −Π).

• Cost decreases in k and converges to Π
2 as k→∞.

Table 2 compares the cost of the two-sided lemons scheme to the one-sided (informed
inspector) scheme (and others) for a range of parameter values. We show in a subsec-
tion 8.3 that the two-sided lemons scheme costs strictly less than the informed inspector
scheme at all parameter values and that the cost of the two-sided lemons scheme con-
verges to half the cost of the optimal one-sided scheme as κ gets large.

Table 2: The costs of selected schemes for parameters πp = 2
3 ,πc = 1

3 ,Π = 3.

Scheme κ = 3 κ = 4 κ = 6 κ = 30 κ =∞
deterministic 1 1 1 1 1

fair coin toss (informed firm) — 0.667 0.667 0.667 0.667
biased coin toss (informed firm) 1 0.667 0.586 0.513 0.5

biased coin toss (informed inspector) 1 0.75 0.5 0.1 0
one-sided (informed inspector) — 0.538 0.307 0.052 0

two-sided 1 0.333 0.172 0.026 0

7 Conclusion

We show how information design can be used together with transfer design to deter bribes
by engineering a lemons problem. The optimal scheme characterised in our main result,
Theorem 1, accommodates monitoring errors, costs strictly less than other schemes in
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the literature, and is relatively simple to implement. This scheme also gives insights into
‘worst case’ information structures and gives an upper bound on the amount of surplus
lost to contagion in bargaining games.

We have shown that the two-sided lemons scheme deters bribes, but bribery contracts
are only a special case of an incentive compatible side-contract. Side contracts addition-
ally allow for the possibility of message dependent bribes, b(x), and correlated agreement
strategies that depend on both messages, σ (x). We conjecture that the two-sided lemons
scheme deters all side contracts. One possibility for future research is to prove this by
showing that the core of the cooperative game with incomplete information (Myerson,
2007; Forge and Serrano, 2013) induced by the scheme is empty.

Studying the core of the cooperative game induced by the two-sided lemons scheme
would also be valuable for extending our results to more than two players. We see this as
a particularly promising avenue for future research because it could help us to utilise the
information held by potential whistleblowers. Specifically, if the lemons problem can be
made disproportionately worse by spreading information across an even larger number
of ‘inspectors’, then we expect to find that the costs of implementing compliance can be
further reduced by offering stochastic rewards to whistleblowers. This stands in contrast
to the case without information design, where hiring multiple monitors does not help to
deter bribery (Stapenhurst, 2019).

Finally, the use of endogenous lemons to deter collusion may have applications be-
yond monitoring. For instance, it can be used to deter illegal trades, such as weapons,
drugs, and human tracking. We also speculate that it could also be used to break up
cartels or to deter sub-coalitions of would-be signatories from undermining international
agreements.
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8 Mathematical appendix

8.1 Proof of proposition 1

The cost of the scheme S II = (qII, (f II
e , f

II
0 , r

II)) is

E[πc(r
II(xI )− f II

e (xI )) + (1−πc)(−f II
0 (xI ))]

=
∫ 1

k−Π
k

πcr
II(xI )− (πcf

II
e (xI ) + (1−πc)f II

0 (xI ))dxI

=
∫ 1

k−Π
k

πc

(
k − k −Π

xI

)
− (πc(1−πc)k − (1−πc)πck)dxI

=πc

∫ 1

k−Π
k

k − k −Π
xI

dxI

=πc

(
k

(
1− k −Π

k

)
− (k −Π)

[
lnxI

]1
k−Π
k

)
=πc

[
Π+ (k −Π) ln

(
1− Π

k

)]
≤πc

[
Π− (k −Π)

Π

k

]
=πc

Π2

k
k→∞−−−−−→ 0,

where the inequality comes from the fact that ln(1 + x) ≤ x for all x > −1 (Topsøe, 2004).
We now show that the scheme is optimal by showing that any feasible solution to

the government’s problem costs weakly more than S II . In any scheme where Ina has
full information about the transfers, she will accept the bribe b whenever she receives a
message xI such that r(xI ) < b. Finn anticipates this, so he accepts bribe b if E[fe(xI ) −
f0(xI )|r(xI ) < b] > b. Therefore, any informed inspector scheme which deters bribes must
at least satisfy E[fe(xI )− f0(xI )|r(xI ) < b] ≤ b for all bribes b ≥ 0.

Define Ina’s expected incentive when Ina rejects a bribe b by E(b) := E
x∼q

[fe(xI )−f0(xI )|r(xI ) ≥

b], and Fr(b) = P
x∼q

[r(xI ) < b]. We use the fact that E(0) = E[fe(xI ) − f0(xI )] = E[fe(xI ) −

f0(xI )|r(xI ) < b]Fr(b) + E(b)(1 − Fr(b)) for any b, to rewrite the no-bribery constraint as
E(0)−E(b)(1−Fr (b))

Fr (b) ≤ b. This rearranges to give Fr(b) ≤ E(b)−E(0)
E(b)−b . If E(0) < b then E(b)−E(0)

E(b)−b > 1,

so the constraint is slack. Otherwise, if E(0) ≥ b, then E(b)−E(0)
E(b)−b is increasing in E(b) and

decreasing in E(0). Finn’s limited liability constraint requires that E(b) ≤ k and his incen-
tive compatibility constrain requires that E(0) ≥ Π. It follows that every bribery-proof
informed inspector scheme satisfies

Fr(b) ≤ E(b)−E(0)
E(b)− b

≤ k −Π
k − b

.

29



In S II , the distribution of rewards is

FIIr (b) = P

xI∼qII
[rII (x) < b] = P

xI∼qII
[xI <

k −Π
k − b

] =
k −Π
k − b

.

Hence the distribution of rewards in any bribery-proof solution must first order stochas-
tically dominate the distribution of rewards in the scheme S II . This implies that every
bribery-proof solution has a weakly higher expected reward than does S II . At the same
time, S II exactly satisfies Finn’s (VP) constraint, so every feasible scheme must have a
weakly lower expected fine than S II . The cost of a scheme is given by Ina’s expected re-
ward minus Finn’s expected fine, so it follows that every feasible scheme must cost weakly
more than S II .

8.2 Informed firm schemes

Consider the biased coin toss (informed firm) scheme described in table 3. Similar tech-

Table 3: The biased coin toss (informed firm) scheme.

Lemon Peach
Probability 1−

√
1−Π/κ

√
1−Π/κ

Fine Finn 4
(
1−
√

1−Π/κ
)
κ

Reward Ina 4 0

niques to those used in section 2 show that this scheme satisfies voluntary participation,
incentive compatibility and deters bribes. The cost of the scheme is πc

√
κ(
√
κ −
√
κ −Π).

When κ = 4 and Π = 3.9 we get that this informed firm scheme costs 3.4πc, whereas the
cheapest informed inspector scheme costs πc

[
Π+ (k −Π) ln

(
1− Π

k

)]
= 3.5πc. In general,

informed firm schemes are cheaper when κ is small enough relative to Π.
The optimal informed firm scheme takes the following form,

qIF is uniform on [0,1]

f IF
e (xF) = (1−πc)

k if xF ≤ x̃IF
x̃IF
xF

otherwise

f IF
0 (xF) = −πc

k if xF ≤ x̃IF
x̃IF
xF

otherwise

rIF(xF) =

k if xF ≤ x̃IF

0 otherwise,

where x̃IF solves x̃IF ln
(
e
x̃IF

)
= Π

κ . Similar techniques to those used in appendix 8.1 show
that this scheme is feasible and cheaper than any other informed firm scheme. However,
it is not easy to work with because no analytical solution for x̃IF exists.
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8.3 The two sided scheme costs strictly less than the one sided schemes.

The informed inspector scheme costs strictly more than the two-sided scheme at all pa-
rameter values:

cII/πc = Π+ (κ −Π) ln
(
1− Π

κ

)
≥Π− (κ −Π)

Π
κ√

1− Π
κ

= Π− (κ −Π)
Π√
κ√

κ −Π

= Π−
√
κ −Π Π

√
κ

=
Π
√
κ

(√
κ −
√
κ −Π

)
> (
√
k −
√
κ −Π)2

= c∗/πc,

where the first inequality results from the fact that ln(1+x) ≥ x√
1+x

for all x ∈ (−1,1] (Topsøe,
2004), and the second comes from the fact that

√
κ >
√
κ −Π

√
κ
√
κ −Π > κ −Π

Π > κ −
√
κ
√
κ −Π

Π
√
κ
>
√
κ −
√
κ −Π.
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Now we show that the two-sided scheme costs half as much as the informed inspector
scheme in the limit.

c∗

cII ≤
√
κ
Π

(
√
κ −
√
κ −Π)

=
κ −

√
κ(κ −Π)
Π

=
κ−
√
κ(κ−Π)
Π

(κ+
√
κ(κ −Π))

κ+
√
κ(κ −Π)

=
κ2−κ(κ−Π)

Π

κ+
√
κ(κ −Π)

=
κ(κ −κ(κ −Π))

Π

=
κ

κ+
√
κ(κ −Π)

κ→∞−−−−−→ 1
2
,

where the first inequality comes from the previous calculations.
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